Answer:
Mass of water produced= 1.8 g
Explanation:
Given data:
Mass of water produced = ?
Mass of butane = 1.36 g
Mass of oxygen = excess
Solution:
Chemical equation:
2C₄H₁₀ +13 O₂ → 8CO₂ + 10H₂O
Number of moles of butane:
Number of moles = mass/molar mass
Number of moles = 1.36 g/ 58.12 g/mol
Number of moles = 0.02 mol
Now we will compare the moles of butane with water.
C₄H₁₀ : H₂O
2 : 10
0.02 : 10/2×0.02 = 0.1 mol
Mass of water produced:
Mass = molar mass × molar mass
Mass = 0.1 mol × 18 g/mol
Mass = 1.8 g
<span>Water is known as a polar molecule because the oxygen atom has a greater attraction for electrons than the hydrogen atom does. Oxygen is more electronegative than that of hydrogen creating a partial charges with the hydrogen and oxygen atoms. Also, the electrons of the covalent bond are not shared equally between the hydrogen and oxygen atoms making it polar.</span>
<span>They have chloroplasts and use light energy to make more food. I think might be wrong </span>
From a stock solution of 3.00 m nitric acid, 9.391 ml of stock solution is needed to create a 0.161 m nitric acid solution, which has a total volume of 175 ml of the diluted solution.
A chemical reagent is present in vast quantities as a stock solution. It has a uniform concentration. Examples of typical stock solutions in laboratories are nitric acid and hydrochloric acid. These play a critical role in creating the titration-related solution preparations.
We know the formula for dilution type problems
M1 VI = M2 V 2
Where,
M, = initial molarity
V , = initial Volume
M2 = final molarity
V 2 = final Volume
Hene given -
M, = 3.00 M
VI = ?
M2 = 0.161M
V 2 = 175 ml
Accordingly ' MI V1 = M2 V 2
V1 =
V1= (0.161M*175ml)/ 3.00M
v1 = 9.391
The required volume of Stock solution is 9.391ml.
Learn more about Stock solution here
brainly.com/question/25256765
#SPJ4
The heat released : -110560.632 J
<h3>Further explanation</h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
<h3>Known</h3>
m =465 g
c water = 4.186 J/gram °C
∆T = temperature difference = 18.2 - 75 = - 56.8 °C
Then the heat :
