1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex17521 [72]
3 years ago
5

Which solid-state component can be used as a switch to turn current on or off?

Physics
2 answers:
geniusboy [140]3 years ago
7 0

Answer:

Transistor

Explanation:

Papessa [141]3 years ago
4 0
The answer is Transistor. Its a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit.
You might be interested in
A parallel RLC circuit contains an inductor with a value of 400 microhenries and a capacitor with a value of 0.3 microfarads wha
ipn [44]

Answer:

The resonant frequency of this circuit is 14.5 kHz.

Explanation:

Given that,

Inductance of a parallel LCR circuit, L=400\ \mu H=400\times 10^{-6}\ H

Capacitance of parallel LCR circuit, C=0.3\ \mu F=0.3\times 10^{-6}\ F

At resonance the inductive reactance becomes equal to the capacitive reactance. The resonant frequency is given by :

f=\dfrac{1}{2\pi \sqrt{LC} }

f=\dfrac{1}{2\pi \sqrt{400\times 10^{-6}\times 0.3\times 10^{-6}} }

f=14528.79\ Hz

or

f = 14.5 kHz

So, the resonant frequency of this circuit is 14.5 kHz. Hence, this is the required solution.

4 0
3 years ago
Which pair of equations can describe the path of a particle moving with an acceleration that is perpendicular to the velocity of
antoniya [11.8K]

Answer:

The question clearly describes the circular motion.

The circular motion equation is

a_{radial} = \frac{v^2}{r}

The path of the particle is circular.

Explanation:

In circular motion, the radial acceleration is always towards the center and constant in magnitude. Furthermore, the velocity of the circular motion is always tangential to the circle, that is it is always perpendicular to the radius, hence the acceleration.

6 0
2 years ago
A finch rides on the back of a Galapagos tortoise, which walks at the stately pace of 0.060 m/s. After 1.1 minutes, the finch ti
Romashka [77]

Answer:

Average Speed = 6.37 m/s

Explanation:

The average speed is simply given by the following formula:

Average Speed = Total Distance Traveled/Total Time Spent

here,

Total Time Spent = 1.1 min + 1.5 min = (2.6 min)(60 s/min) = 156 s

Now, for total distance, we have to calculate the distance traveled on tortoise and distance traveled while flying, separately. Therefore,

Distance Traveled on Tortoise = (Time spent on Tortoise)(Speed of Tortoise)

Distance Traveled on Tortoise = (1.1 min)(60 s/min)(0.06 m/s) = 3.96 m

Similarly,

Flying Distance = (Flying Time)(Flying Speed) = (1.5 min)(60 s/min)(11 m/s)

Flying Distance =  990 m

Since, total distance is the sum of both distances, therefore,

Total Distance = 3.96 m + 990 m = 993.96 m

Now, using the values in equation of average speed, we get:

Average Speed = 993.96 m/156 s

<u>Average Speed = 6.37 m/s</u>

4 0
3 years ago
1. What is work done in holding a 15kg suitcase while waiting for a bus for 15 minutes?
Tems11 [23]
Work is (force applied) x (distance through which the force moves).

Since the suitcase doesn't move up or down during the 15 minutes,
no work is done ... zero, zip, nada ... according to the real Physics
definition of 'work'.
6 0
2 years ago
The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume tha
belka [17]

Given that,

Energy H=2.7\times10^{31}\ W

Surface temperature = 11000 K

Emissivity e =1

(a). We need to calculate the radius of the star

Using formula of energy

H=Ae\sigma T^4

A=\dfrac{H}{e\sigma T^4}

4\pi R^2=\dfrac{H}{e\sigma T^4}

R^2=\dfrac{H}{e\sigma T^4\times4\pi}

Put the value into the formula

R=\sqrt{\dfrac{2.7\times10^{31}}{1\times5.67\times10^{-8}\times(11000)^4\times 4\pi}}

R=5.0\times10^{10}\ m

(b). Given that,

Radiates energy H=2.1\times10^{23}\ W

Temperature T = 10000 K

We need to calculate the radius of the star

Using formula of radius

R^2=\dfrac{H}{e\sigma T^4\times4\pi}

Put the value into the formula

R=\sqrt{\dfrac{2.1\times10^{23}}{1\times5.67\times10^{-8}\times(10000)^4\times4\pi}}

R=5.42\times10^{6}\ m

Hence, (a). The radius of the star is 5.0\times10^{10}\ m

(b). The radius of the star is 5.42\times10^{6}\ m

8 0
3 years ago
Other questions:
  • Mary is 52kgs and standing on a ladder. What forces are acting on her?
    14·1 answer
  • Can someone please explain what inertia is?
    10·2 answers
  • Atmospheric pressure is due to the weight _______
    10·1 answer
  • A special electronic sensor is embedded in the seat of a car that takes riders around a circular loop-the-loop ride at an amusem
    13·1 answer
  • A scientist heats a flexible container full of neon gas. What will most likely happen to the container as the gas absorbs heat?
    14·2 answers
  • Argon makes up 0.93% by volume of air. Calculate its solubility (in mol/L) in water at 20°C and 1.0 atm. The Henry's law constan
    5·1 answer
  • How does the jet stream affect the movement of air masses
    12·1 answer
  • How are engineers creating clothing that can charge your cell phone. Explain the science behind their innovation.
    13·1 answer
  • How is an image from a CT scan made from 2D X-ray images?
    5·2 answers
  • Two charged spheres 10 cm apart attract each other with a force of 3.0 x 10^-6 N. What electrostatic force will result if both c
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!