Answer:
Neutrons
Explanation:
<em>Protons</em> and <em>neutrons</em> make up the nucleus of the atom
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
So,
a) 0 < r < r1 :
We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.
Hence, E = 0 for r < r1
b) r1 < r < r2:
Electric field =?
Let, us consider the Gaussian Surface,
E x 4
= 
So,
Rearranging the above equation to get Electric field, we will get:
E = 
Multiply and divide by
E =
x 
Rearranging the above equation, we will get Electric Field for r1 < r < r2:
E= (σ1 x
) /(
x
)
c) r > r2 :
Electric Field = ?
E x 4
= 
Rearranging the above equation for E:
E = 
E =
+ 
As we know from above, that:
= (σ1 x
) /(
x
)
Then, Similarly,
= (σ2 x
) /(
x
)
So,
E =
+ 
Replacing the above equations to get E:
E = (σ1 x
) /(
x
) + (σ2 x
) /(
x
)
Now, for
d) Under what conditions, E = 0, for r > r2?
For r > r2, E =0 if
σ1 x
= - σ2 x 
Answer:
A) F_g = 4.05 10⁻⁴⁷ N, B) F_e = 9.2 10⁻⁸N, C)
= 2.3 10³⁹
Explanation:
A) It is asked to find the force of attraction due to the masses of the particles
Let's use the law of universal attraction
F = 
let's calculate
F = 
F_g = 4.05 10⁻⁴⁷ N
B) in this part it is asked to calculate the electric force
Let's use Coulomb's law
F = 
let's calculate
F = 
F_e = 9.2 10⁻⁸N
C) It is asked to find the relationship between these forces

= 2.3 10³⁹
therefore the electric force is much greater than the gravitational force
Complete Question
The speed of a transverse wave on a string of length L and mass m under T is given by the formula

If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
Answer:

Explanation:
From the question we are told that
Speed of a transverse wave given by

Maximum Tension is 
Generally making
subject from the equation mathematically we have




Therefore the Linear mass in terms of Velocity is given by
