The intensity of the magnetic force exerted on the wire due to the presence of the magnetic field is given by

where
I is the current in the wire
L is the length of the wire
B is the magnetic field intensity

is the angle between the direction of the wire and the magnetic field
In our problem, L=65 cm=0.65 m, I=0.35 A and B=1.24 T. The force on the wire is F=0.26 N, therefore we can rearrange the equation to find the sine of the angle:

and so, the angle is
This is best explained through the use of an optics diagram, this is a little too complicated to explain in a short answer, and as I can't draw an appropriate diagram in this answer, I will point you to this excellent resource which explains what you have asked very well!
Go onto the BBC website (you should have access to it even if you aren't in the UK) and paste this after the BBC url,
/bitesize/intermediate2/physics/waves_and_optics/image_formation_from_lens/revision/1/
Answer:
i = 4.9 A
Explanation:
The expression for the magnetic force in a wire carrying a current is
F = i L x B
bold letters indicate vectors.
The direction of the cable is towards the East, the direction of the magnetic field is towards the North, so the vector product is in the vertical direction (z-axis) upwards and the weight of the cable is vertical downwards. Let's apply the equilibrium condition
F - W = 0
i L B = m g
They indicate the linear density of the cable λ = 0.2 kg / m
λ = m / L
m = λ L
we substitute
i B = λ g
i = 
let's calculate
i = 0.2 9.8 / 0.4
i = 4.9 A
Before a person walks through burning coal, the person will make sure their feet are very wet. When they start walking on the coal, this moisture will evaporate and form a protective gas layer underneath the person's feet. You can see examples of this if you happen to drip some water on a hot stove or any very hot surface. The water will very easily glide around on top of a newly formed layer of air underneath it -- like air hockey pucks on an air hockey table. Note that when someone walks through burning coal, typically this is also done very quickly to prevent a great deal of exposure to possible harm. By walking quickly, thinking positively, and letting the water cushion you from immediate danger over a short distance, such a task is possible. You may have also heard of physics teachers demonstrating how this principle works by sticking their hand first in a bucket of water and then quickly in a bucket of boiling molten lead. In the lead, their hand is protected briefly by a layer of gas from the evaporated water (the water vapor). I'm fairly sure that there is a name for this particular layer of gas, but I'm afraid the name is beyond me at the moment. In other words, water vapor has a low heat capacity and poor thermal conduction. Very often, the coals or wood embers that are used in fire walking also have a low heat capacity. Sweat produced on the bottom of people's feet also helps form a protective water vapor. All of this together makes it possible, if moving quickly enough, to walk across hot coals without getting burned. WARNING: Do not attempt to perform any of the actions described above. You can seriously injure yourself. Answered by: Ted Pavlic, Electrical Engineering Undergrad Student, Ohio St. (citing my source)
Answer:
The factors include age and puberty
Explanation:
Glandular secretion release chemicals such as hormones in response to the body’s metabolic needs.
As an individual ages , the metabolic rate of the body also reduces . This is due to the stress and ageing of the cells of the body. This explains why glandular secretion is optimal with young people and Lower in older people. It also explains why the immune system of a young person is mostly stronger than older people.
Puberty is another factor which affects glandular secretion as during puberty there is usually a high amount of hormonal changes due to high levels of secretions of some hormones. These hormones could however inhibit the other glandular secretions.