This question needs research to be answered. From the given information alone it can't be answered without making wild assumptions.
Ideally, you need to take a look at a distribution (or a histogram) of asteroid diameters, identify the "mode" of such a distribution, and find the corresponding diameter. That value will be the answer.
I am attaching one such histogram on asteroid diameters from the IRAS asteroid catalog I could find online. (In order to get a single histogram, you need to add the individual curves in the figure first). Eyeballing this sample, I'd say the mode is somewhere around 10km, so the answer would be: the diameter of most asteroid from the IRAS asteroid catalog is about 10km.
Cacu. H2SO.chemical properties related to the used in chemical property
In spring mass system we know that angular frequency is given as

f = 8.38 Hz


now we know that speed of SHM at its extreme position is given by

here we know that
A = 17.5 cm


so maximum speed is 9.21 m/s
According to law of conservation of energy,
<span>Energy can neither be constructed nor be destroyed but can be transformed from one form to another.
</span>
<span>At the highest point of the pendulum(point b), pendulum is associated with potential energy only and no kinetic energy.
</span><span>Therefore total energy at point b = potential energy = 711 J.... i
</span>
<span>At the bottom most point(point a), pendulum is associated only with kinetic energy and no potential energy.
</span>Therefore total energy at point a = kinetic energy ---- ii
<span>From i and ii,
</span>Kinetic energy = potential energy = 711 J.(Conserving energy)
Hence kinetic energy at the bottom most point is 711 J.
Hope this helps!!