So we need to find the formula for magnetic field B using the current (I) and the distance from the probe (d). So, We know that the stronger the current I, the stronger the magnetic field B. That tells us that the I and B are proportional. Also we know that the strength of the magnetic field B is weaker as the distance d of the probe increases. That tells us that B and d are inversely proportional. So our formula should have B=(I/d)*c where c is a constant of proportionality. c=μ₀/2π where μ₀ is the permeability of free space. So finally our formula is B=(μ₀I)/(2πd).
Answer:
6787.5 V
Explanation:
From the question,
P = IV..................... Equation 1
Where P = Power, I = rms current, V = rms voltage.
make V the subject of the equation
V = P/I................. Equation 2
Given: P = 1500 W, I = 6.4/√2 = 4.525 A
Substitute these values into equation 2
V = 1500(4.525)
V = 6787.5 V
Hence the rms voltage = 6787.5 V
Answer: 
Explanation:
Given
mass of ball m=10 kg
It is placed at a height of 150 m
It is dropped from the height and allowed to free fall for 40 m
Velocity acquired by the ball during this fall is given by 
Insert u=0, a=g

Kinetic energy at this instant

Answer:
Yes
Explanation:
There is a position that works better than this and that is switching the sides of the forks.
Answer:
The gauge pressure of air is 110 kpa
Explanation:
Atmospheric pressure,
= 101 Kpa


where;
ρw is the density of water = 1000 kg/m³
ρo is the density of oil = 800 kg/m³
ρHg is the density of mercury = 13,600 kg/m³
g is acceleration due to gravity = 9.8 m/s²

Therefore, the gauge pressure of air is 110 kpa