The question here would be what is the volume of the room. The density of air that is given has no use. We simply multiply the dimensions given of the room to determine the volume.
<span>43.0m × 18.0m × 15.0m = 11610m^3 ( 3.28 ft / 1 m)^3 = 4.09 x 10^5 ft^3</span>
It's either staying there or is going at the same pace
Answer with Explanation:
We are given that




a.We have to find the total dose
Total dose=
Using the formula then, we get


b.We have to find the total dose equivalent
Total dose equivalent=H=
Using the formula

H=3.1mSv
<span>3) Neither precise or accurate.
This is because of the deviation between the measurements, they vary and are not within a good range. And they are not close to the accepted value. In order to be precise the measurements have to be relatively close to each other, and to be accurate they have to be close to the accepted value.</span>
In order to accelerate the dragster at a speed

, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:

and the sign is negative because the frictional force acts against the direction of motion of the dragster.
This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is

:

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:

And since 1 horsepower is equal to 746 W, we can rewrite the power as