Alkenes must undergo addition because they have easily broken tt bonds.
Markonikov's rule states in the addition of HX to an unsymmetrical alkene, the H atom bonds to the less substituted carbon atom.
alkenes are unsaturated hydrocarbons because they have fewer than the maximum number of hydrogen atoms per carbon.
Alkyl halides have good leaving groups and therefore readily undergo substitution and elimination reactions.
In hydroboration, the boron atom bonds to the substituted carbon.
Hydroxides, amines and alcoxides undergo substitution and elimination, but can do so only when the heteroatom is made into a good leaving group.
In a chemical equation, the arrow
A. can be read as "yields" or "makes."
B. always points toward the products.
C. separates the products and reactants.
D. all of these
all of these options are right.
The heat transfer formula is;
Q = m * c * Δ T >>>> (1)
where, Q is the heat transfer
m = mass (gram)
c = the specific heat capacity (J/g)
Δ T = change in temperature
∵ we have one mole of Ethanol
∴ the weight of ethanol equals its molecular weight = (2*12)+(6*1)+(16) = 46 g
we will assume that the specific heat capacity of ethanol is 2.46 J/g (from google)
ΔT = 25 - 320 = - 295 C
By substitution in (1)
∴ Q = 2.46 * 46 * (-295) = - 33382.2 J
<u>Answer:</u> The molality of magnesium chloride is 1.58 m
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:
Where,
= Given mass of solute (magnesium chloride) = 75.0
= Molar mass of solute (magnesium chloride) = 95.21 g/mol
= Mass of solvent = 500.0 g
Putting values in above equation, we get:
Hence, the molality of magnesium chloride is 1.58 m
2H2 (g) + O2 (g) -->2H2 O(g)
mole ratio of H2:O2=2:1
7.25/2=3.625