You need to use the Ka for the acetic acid and the equilibrium equation.
Ka = 1.85 * 10^ -5
Equilibrium reaction: CH3COOH (aq) ---> CH3COO(-) + H(+)
Ka = [CH3COO-][H+] / [CH3COOH]
Molar concentrations at equilibrium
CH3COOH CH3COO- H+
0.50 - x x x
Ka = x*x / (0.50 - x) = x^2 / (0.50 - x)
Given that Ka is << 1 => 0.50 >> x and 0.50 - x ≈ 0.50
=> Ka ≈ x^2 / 0.50
=> x^2 ≈ 0.50 * Ka = 0.50 * 1.85 * 10^ -5 = 0.925 * 10^ - 5 = 9.25 * 10 ^ - 6
=> x = √ [9.25 * 10^ -6] = 3.04 * 10^ -3 ≈ 0.0030
pH = - log [H+] = - log (x) = - log (0.0030) = 2.5
Answer: 2.5
What types of atoms typically form covalent bonds?
The correct answer:
d) Nonmetals with nonmetals, because their difference in electronegativity is below 1.7.
En example to explain:
An example of a covalent bonding: HCl -> 2 nonmentals
-> a difference in electronegativity less than 1.7:
EN(Cl) = 3.0 and EN (H) = 2.1 (you can search these values in a periodic table)
/\EN = 3.0 - 2.1 = 0.9
0.9 < 1.7
I hope this helped you out!
Answer:
accretion at convergent boundaries
Explanation:
The reaction would produce bubbles of gas.
We can prepare 3-5 test tubes of acid with increasing concentrations. Then, we add antacid tablets to each and note the time taken for the tablet to dissolve and stop producing bubbles. The lesser the time taken, the greater the rate of reaction.