1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
strojnjashka [21]
3 years ago
15

Help????? urgent!!!!!!!!

Mathematics
1 answer:
defon3 years ago
3 0
Y=2x-3.
Answer B.

Proof

When y=1 then x=2
y=2x-3
1=2*2-3
1=4-3
1=1

.............
You might be interested in
-(1/x+3) +4
nlexa [21]

9514 1404 393

Answer:

  • left 3 units
  • up 4 units
  • shape: lower left image

Step-by-step explanation:

For a parent function f(x), the transformations ...

  g(x) = a×f(x -h) +k

cause ...

  • vertical expansion by 'a', reflection over x-axis if negative
  • right shift by 'h'
  • up shift by 'k'

Here, we have parent function f(x) = 1/x with a=-1, h=-3, k=4. Then the transformations are ...

  horizontal shift left 3 units

  vertical shift up 4 units

  reflection over x-axis, so curves are above-left and below-right of the reference point (Note that the reflection is done <em>before</em> the translation.)

4 0
2 years ago
What is the ratio for 45 miles and 0.75 hours
alisha [4.7K]

Answer:

I'm pretty sure it is 60 miles per hour (60:1)

Step-by-step explanation:

I used a unit rate calculator

Sorry if I'm wrong

6 0
3 years ago
Simplify √18 ÷ √12 please help explain this
qaws [65]
√18 ÷ √12 = 1.22474487139159
8 0
3 years ago
Read 2 more answers
interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm
Igoryamba

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

3 0
3 years ago
13 weeks is what percent of 52 weeks
Aleonysh [2.5K]
To get a number as a percent of another, you divide and multiply by 100, so here you would have (13/52)*100=.25*100=25, making your answer 25%.
3 0
3 years ago
Other questions:
  • Which of the following shows the graph of y = 2 l n x On a coordinate plane, a curve starts at (0, negative 2) in quadrant 4 and
    7·2 answers
  • Determine the cost of 5 pounds of bananas if 2 pounds cost $1.16
    14·2 answers
  • Triangle ABC is reflected over the line y = 1. What are
    7·1 answer
  • Given f(x)=(x+5)(x-2), what are the x-intercepts?
    15·1 answer
  • Match each fraction with its equivalent decimal number.
    8·1 answer
  • Wat is 10,000 more than 6,310
    15·1 answer
  • Question 2 (1 point)
    10·1 answer
  • F(x) = x2. What is g(x)?<br><br> pls help it’s due soon!!
    14·1 answer
  • A runner ran of a 5 kilometer race in 21 minutes. They ran the entire race at a constant speed.
    10·1 answer
  • Please help i think its simple!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!