Answer:

Explanation:
Hello,
In this case, for a concentration of 0.42 M of benzoic acid whose Ka is 6.3x10⁻⁵ in 0.33 M sodium benzoate, we use the Henderson-Hasselbach equation to compute the required pH:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the concentration of the base is 0.33 M and the concentration of the acid is 0.42 M, thereby, we obtain:
![pH=-log(Ka)+log(\frac{[base]}{[acid]} )\\\\pH=-log(6.3x10^{-5})+log(\frac{0.33M}{0.42M} )\\\\pH=4.1](https://tex.z-dn.net/?f=pH%3D-log%28Ka%29%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29%5C%5C%5C%5CpH%3D-log%286.3x10%5E%7B-5%7D%29%2Blog%28%5Cfrac%7B0.33M%7D%7B0.42M%7D%20%29%5C%5C%5C%5CpH%3D4.1)
Regards.
Hello:
In this case, we will use the Clapeyron equation:
P = ?
n = 8 moles
T = 250 K
R = 0.082 atm.L/mol.K
V = 6 L
Therefore:
P * V = n * R * T
P * 6 = 8 * 0.082* 250
P* 6 = 164
P = 164 / 6
P = 27.33 atm
Hope that helps!
Answer:
2co+o2=2co2
Explanation:
co+o2=co2
here is one carbon monoxide and two oxygen react with it and forms carbon dioxide..
2co+o2=2co2
hey mate hope it's help you.. please mark it as a brain.... answer
Is this a test or something else?
Answer:
(c) P and Sb
Explanation:
We can determine the number of valence electrons of an element:
- If it belongs to Groups 1 and 2, the number of valence electrons is equal to the number of group and the differential electron occupies the s subshell.
- If it belongs to the groups 13-18, the number of valence electrons is equal to: "Number of group - 10" and the differential electron occupies the p subshell.
Which pair of elements have the same valence electronic configuration of np³?
(a) O and Se. NO. They belong to the group 16 and the valence electron configuration is ns² np⁴.
(b) Ge and Pb. NO. They belong to the group 14 and the valence electron configuration is ns² np².
(c) P and Sb. YES. They belong to the group 15 and the valence electron configuration is ns² np³.
(d) K and Mg. NO. They belong to the groups 1 and 2 and the valence electron configuration is ns¹ and ns².
(e) Al and Ga. NO. They belong to the group 13 and the valence electron configuration is ns² np¹.