Answer : The pH of the solution is, 4.9
Explanation : Given,
Dissociation constant for acetic acid = 
Concentration of acetic acid = 0.05 M
Concentration of sodium acetate = 0.075 M
First we have to calculate the value of
.
The expression used for the calculation of
is,

Now put the value of
in this expression, we get:



Now we have to calculate the pH of buffer.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[CH_3COONa]}{[CH_3COOH]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BCH_3COONa%5D%7D%7B%5BCH_3COOH%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of the solution is 4.9.
Explanation:
According to the ideal gas equation, PV = nRT.
where, P = pressure, V = volume
n = no. of moles, R = gas constant
T = temperature
Also, density is equal to mass divided by volume. And, no. of moles equals mass divided by molar mass.
Therefore, then formula for ideal gas could also be as follows.
P = 
or, P = 
Since, density is given as 0.789 g/ml which is also equal to 789 g/L (as 1000 mL = 1 L). Hence, putting the given values into the above formula as follows.
P = 
= 
= 525 atm
As two-liter soft drink bottle can withstand a pressure of 5 atm and the value of calculated pressure is 525 atm which is much greater than 5 atm.
Therefore, the soft drink bottle will obviously explode.
Answer:
2.29*10^24 molecules of water
Explanation:
1 molof water =6.022*10^23 molecules of water
therefore
molecules of water = 3.8*6.022*10^23
How many inches are in 450 cm?
0.393701 in = 1 cm
0.393701 × 450 = <span>177.16545
450 cm = </span><span>177.16545 in</span>
<span>On the periodic table, the majority of elements are classified as "Metals"
In short, Your Answer would be Option A
Hope this helps!</span>