Answer:
False.
Explanation:
The forces on the car and truck are equal and opposite. The equal forces cause accelerations of the truck and car inversely proportional to their mass. That is, If the Truck A exerts a force FAB on car B, then the car will exert a force FBA on the truck. Therefore,
FBA = −FAB
However, this can be explained by Newton's second law. Let's say the truck has mass M and the car has mass m. If the magnitude of the force that both vehicles experience is F, then the magnitudes of their respective accelerations are:
atruck = F/M
acar = F/m
and combining these we get:
atruck/acar = m/M
So if the mass of the car is a lot less than the mass of the truck, then the acceleration of the truck is much smaller than the acceleration of the car, and if you were to watch the collision, the truck would pretty much seem like it's motion was unaffected, but the car's motion will change quite a bit.
2) Unbalanced. Mike will push the box with a force of 20 N. The forces would be balanced if the box responded with 30 N.
3) Balanced. Both boys are pulling with the same force. Neither is winning.
4) Unbalanced. The rope will move with 10 N to the west. The teachers are winning.
5) Unbalanced. The kids are pulling 220 N to the east. The kids are winning.
6) Balanced. You and the dog are pulling with the same force.
the electrons shared between the oxygen and hydrogen atoms spend more time around the oxygen atom nucleus than around the hydrogen atom nucleus
The wall will push back, in exactly the opposite direction, and with
exactly the same size force.
That's why the net force on the palm of your hand is zero, and that
in turn is the reason that your hand doesn't accelerate.
If you keep increasing the strength of your push, then eventually you
exceed the force that the wall is capable of delivering. Then the wall
crumbles and falls, your hand accelerates in the direction you're pushing,
and the crowd goes wild !