The third (left hand corner) since the x and y are both negative.
(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
Answer:
1. To determine the average speed for the first day of the trip, the total distance traveled would have to be acquired and then how long it took to arrive at the final destination, only including the time that was actually traveled and not any time that was accumulated by any rest stops. Once you have this information, you have to divide the distance over time and you have the average speed (mph).
2. To determine the instantaneous speed, you would just have to look at the speedometer, which tells you at what speed the car is traveling at that exact moment.
Explanation:
I took physics 121 and got the same question. This is my answer that i used and my teacher said it was right.