Answer:
Linear magnification = 1/3
Explanation:
Given:
Convex mirror
Object's distance from pole = 2f
Find:
Linear magnification
Computation:
Object distance, u = −2f
So,
1/v + 1/u = 1/f
1/v + 1/(-2f) = 1/f
1/v = 1/f + 1/2f
BY taking LCM
1/v = 3 / 2f
v = 2f / 3
Magnification, M = -v / u
So,
Magnification, M = (2f / 3) / 2f
Magnification, M = 2f / 6f
Magnification, M = 2 / 6
Linear magnification = 1/3
Answer:
0 m/s
The car becomes stationary
Explanation:
The law of conservation of linear momentum states that the sum of inital and final momentum should be equal and expressed as

Where m represent the mass, u and v are tge initial and final velocities while subscripts c and t represent car and truck.
Taking forward direction as positive then considering that the truck is originally at rest, we substitute original truck velocity with 0, mass of car and truck with 1000 kg and 5000 kg respectively then final truck velocity as 2 m/s as we take initial car velocity to be 10 m/s
1000*10+(5000*0)=5000*2+1000v
1000v=0
V=0
Therefore, the car finally becomes stationary.
Answer:
n = 1.42
Explanation:
The refractive index for a medium is given by the ratio of the speed of light in vacuum to the speed of light in a medium.

So, the refractive index of the medium is 1.42.
Answer:
v=0.94 m/s
Explanation:
Given that
M= 5.67 kg
k= 150 N/m
m=1 kg
μ = 0.45
The maximum acceleration of upper block can be μ g.
a= μ g ( g = 10 m/s²)
The maximum acceleration of system will ω²X.
ω = natural frequency
X=maximum displacement
For top stop slipping
μ g =ω²X
We know for spring mass system natural frequency given as

By putting the values

ω = 4.47 rad/s
μ g =ω²X
By putting the values
0.45 x 10 = 4.47² X
X = 0.2 m
From energy conservation


150 x 0.2²=6.67 v²
v=0.94 m/s
This is the maximum speed of system.