Answer:
Static Friction - acts on objects when they are resting on a surface
Sliding Friction - friction that acts on objects when they are sliding over a surface
Rolling Friction - friction that acts on objects when they are rolling over a surface
Fluid Friction - friction that acts on objects that are moving through a fluid
Explanation:
Examples of static include papers on a tabletop, towel hanging on a rack, bookmark in a book
, car parked on a hill.
Example of sliding include sledding, pushing an object across a surface, rubbing one's hands together, a car sliding on ice.
Examples of rolling include truck tires, ball bearings, bike wheels, and car tires.
Examples of fluid include water pushing against a swimmer's body as they move through it , the movement of your coffee as you stir it with a spoon, sucking water through a straw, submarine moving through water.
Answer:
mph
Explanation:
= Speed of bird in still air
= Speed of wind = 44 mph
Consider the motion of the bird with the wind
= distance traveled with the wind = 9292 mi
= time taken to travel the distance with wind
Time taken to travel the distance with wind is given as

eq-1
Consider the motion of the bird with the wind
= distance traveled against the wind = 6060 mi
= time taken to travel the distance against wind
Time taken to travel the distance against wind is given as

eq-2
As per the question,
Time taken with the wind = Time taken against the wind





mph
Answer: Mechanical waves
Explanation:
Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.
Initial velocity =0, a=3m/s2, final velocity =18m/s, 18=3t, t=6 sec