Your answer is electricity, light and magnetism. They can be determined usinf elecromagnetic radioation.
<span>
Even the energy can't be detected by our eyes, there are a lot of measurement instruments that can measure infrared (IR), gamma rays, radio or X-rays or ultraviolet (UV)</span>
Answer:
<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

- v is image distance
- u is object distance, u is 10 cm
- f is focal length, f is 5 cm

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>
• Let's derive this formula from the lens formula:

» Multiply throughout by fv

• But we know that, v/u is M

- v is image distance, v is 10 cm
- f is focal length, f is 5 cm
- M is magnification.

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>
- Image is magnified
- Image is erect or upright
- Image is inverted
- Image distance is identical to object distance.
His velocity is 3 m/s in the direction in which he is running in. which.
First, we convert kcal to joules:
1 kcal = 4.184 kJ
475 kcal = 1987.4 kJ
Now, calculating the change in internal energy:
ΔU = Q + W; where Q is the heat supplied to the system and W is the work done on the system.
ΔU = -500 + 1987.4
ΔU = 1487.4 kJ