The average density of the material from which the coin is made is 9.67 g/cm³.
<h3>Volume of the coin</h3>
The volume of the coin at the given diameter is calculated as follows;
V = Ah
where;
- A is area of the coin
- h is the thickness of the coin
V = πd²/4 x h
V = π(2.8)²/4 x (0.21 cm)
V = 1.293 cm³
<h3>average density of the coin</h3>
The average density of the material from which the coin is made is calculated as follows;
density = mass/volume
density = 12.5 g / (1.293 cm³)
density = 9.67 g/cm³
Thus, the average density of the material from which the coin is made is 9.67 g/cm³.
Learn more about average density here: brainly.com/question/1354972
#SPJ1
Answer:
D. because the light is reflected back into the fiber along its sides
Explanation:
The fiber is constructed in a way that the light is bent/reflected/refracted toward the center core of glass. So, from the center core, there is a layer above it that has a different propagation than the core, and above that the same thing. To give you a real world visual example, if you look down in a pool of water, then stick a straight stick into it, you see that the straight stick appears to bend. That is what is happening to the light as it travels through a different medium (air to water). This same effect is incorporated in the fiber optic cable construction.
Answer:
gravitational constant value means it was never change in any particular area of the Earth
dimension = 30.0 m ✕ 15.0 m ✕ 5.0 m.
density = 1.20 kg/m3
(a)volume = lenght * breadth * height
= 30 * 15 * 5
= 2250 metre cube = 2.25 cubic meter
(b) mass of air = density * volume
mass of air = 1.2 * 2250
mass of air = 2700kg
weight = mass * 9.8
= 2700 * 9.8
= 26,460 N
- The definition of Density is the amount of matter in a given space, or volume
- Density = mass/volume
- units for density kg/m^3
- Density of water 1g/ml
- Salt water is denser that is why don't sink as easily.
To know more about density visit : brainly.com/question/15164682
#SPJ4
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
Stress is defined as force per unit area and strain is defined as proportional deformation in a material.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight
l = length of wire
A = area of cross section
= change in length
Hence, the correct answer is Option b.