Answer:
I think D am not pretty show
Answer:
Δ KE = 249158.6 kJ
Explanation:
given data
Truck mass M = 1560 Kg
Truck initial speed, u = 28 m/s
mass of car m = 1070 Kg
initial speed of car u1 = 0 m/s
solution
first we get here final speed by using conservation of momentum that is express as
Mu = (M+m) V .......................1
put here value we get
1560 × 28 = (1560 + 1070 ) V
solve it we get
final speed V = 16.60 m/s
and
Change in kinetic energy will be here
Δ KE =
.................2
put here value and we get
Δ KE =
solve it we get
Δ KE = 249158.6 kJ
Answer:
The moon has no atmosphere
Explanation:
The temperatures on the surface of the Moon vary much more than those on Earth because the moon has no atmosphere (third answer in the list), and therefore there are no molecules that could retain residual heat and make the change from day to night a softer transition.
We know that the source of light in the universe is the Sun. Hence, the light we see as moonlight travels from the Sun's surface, to the moon, then to Earth. So, before being able to solve this problem, we have to know the distance between the Sun and the moon, and the distance between the moon and Earth. In literature, these values are 3.8×10⁵ km (Sun to moon) and 384,400 km (moon to Earth). Knowing that the speed of light is 300,000 km per second, then the total time would be
Time = distance/speed
Time = (3.8×10⁵ km + 384,400 km)/300,000 km/s
Time = 2.548 seconds
Thus, it only takes 2.548 for the light from the Sun to reach to the Earth as perceived to be what we call moonlight.