Fgdgdfgdfgdfgdfgfdgfsdasffglkjhuifgnufgu
We are given with the mass of pure iron that reacts with oxygen to form an oxide which has a given mass as well. the mass of oxygen reacted is 8.15-6.25 g or 1.9 grams. THen we convert the mass of the reactants to moles. Iron is equal to 0.1119 moles and oxygen is equal to 0.1188. We divide each number to the less amount. Hence iron is 1 and oxygen is approx 1. The empirical formula hence is FeO or ferrous oxide or Iron (II) oxide.
Answer:
uh A.)? [ZnCI2+H2]? /////////
In a flame photometric analysis, salt solution is first vaporized using the heat of flame, followed by this electrons from valance shell gets excited from ground state to excited state. Followed by this de-excitation of electron bring backs electrons to ground state. This process is accompanied by emission of photon. The photon emitted is characteristic of an element, and number of photons emitted can be used for quantitative analysis.
<span>Following are the investigative question that you can answer by doing this experiment.
</span>1) What information can be obtained from the colour of flame?
2) <span>State the relationship between wavelength, frequency, and energy?
</span><span>3) Can you identify the metal present in unknown sample provided?
4) How will you identify amount of metal present in sample solution?
5) </span><span>Why do different chemicals emit light of different colour?</span><span>
</span>
Answer:
(n, l, m sub l, m sub s)
N: principle quantum number (1,2,3,4,etc)
l: angular momentum quantum number, the shape (l has to be at least 1 less than n, but can be 0 depending on n)
M sub l: magnetic quantum number (l determines this number)
M sub s: spin quantum number (can only ever be 1/2 or -1/2)
Explanation: