Answer:
A cation is an ion with fewer electrons than protons. Therefore, it has a positive charge. The electric charge on a proton is equal in amount to the charge on an electron. Anions are atoms or radicals (groups of atoms), that have gained electrons. Since they now have more electrons than protons, anions have a negative charge. Halogens always form anions, alkali metals and alkaline earth metals always form cations. Most other metals form cations (e.g. iron, silver, nickel), whilst most other nonmetals typically form anions (e.g. oxygen, carbon, sulfur).
Explanation:
An anion and cation cannot be specifically found on the periodic table.
Answer:
The Radius is the distance from the center outwards. The Diameter goes straight across the circle, through the center. The Circumference is the distance once around the circle.
Answer:
anion
Explanation:
anion undergoes reduction.
cation undergoes oxidation.
<span>The
kingdom, protista’s characteristics are that the organism (not a plant,
animal or fungus) are:
unicellular however some are multicellular like algae, are heterotrophic or
autotrophic, others lives in water while some live in moist areas or human body,
have a nucleus, cellular respiration is primarily aerobic, some are pathogenic
(e.g. causing Malaria) and reproduction is mitosis or meiosis. This kingdom
includes: Sacordinians – pseudopods (e.g. Amoeba, Foraminiferans<span>.)</span>, Zooflagellates – flagellates
(e.g. Trypanosoma gambiense),
Ciliaphorans – ciliates (e.g. paramecium) and Sporozoans (e.g. Plasmodium).</span>
Answer:
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Explanation:
Hello,
In this case, for the described situation, we infer that calcium reacts with fluoride ions to yield insoluble calcium fluoride as shown below:

Which is typically an equilibrium reaction, since calcium fluoride is able to come back to the ions. In such a way, since the maximum amount is computed via stoichiometry, we can see a 1:2 mole ratio between the ions, therefore, the required maximum amount of fluoride ions in the "hard" water (assuming no other ions) turns out:
![[F^-]_{max}=2.0x10^{-3}\frac{molCa^{2+}}{L}*\frac{2molF^-}{1molCa^{2+}} \\](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D2.0x10%5E%7B-3%7D%5Cfrac%7BmolCa%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B2molF%5E-%7D%7B1molCa%5E%7B2%2B%7D%7D%20%20%5C%5C)
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Best regards.