Answer:
Headlands and bays are created where there are bands of hard and soft rock which meet the coastline at right angles. Softer rock is eroded more quickly and erodes backwards to form bays (which may have beaches). The harder rocks are more resistant to erosion and jut out into the sea to form exposed headlands
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
C. coil suspended by bearings.
<span>but im not 100% sure</span>
To have a uniform field. The field is the voltage between the plates divided by the distance between the plates. If the distance varies so would the field between them.
Answer:
Work done = 4584.9 J
Explanation:
given: q1=3.0 mC = 3.0 × 10⁻³ C, r = 20 cm = 0.20 m, q1 = 34μC = 34 × 10⁻⁶ C
Solution:
Formula for the potential difference at the center of the circle
P.E = K × q1 q2 /r (Coulomb's constant k= 8.99 × 10⁹ N·m² / C²)
P.E = 8.99 × 10⁹ N·m² / C² × 3.0 × 10⁻³ C × 34 × 10⁻⁶ C / 0.20 m
P.E = 4584.9 J = Work done