The acceleration is 
Explanation:
We can solve the problem by applying Newton's second law of motion: in fact, the net force acting on an object is equal to the product between the mass of the object and its acceleration. Therefore we can write:

where:
is the resultant force acting on the object
m is its mass
a is its acceleration
In this problem, we have the following forces acting on the system:
(forward)
(backward)
So, Newton's second law can be rewritten as:

where:
m = 1050 kg is the mass of all the students
Solving the formula for a, we find the acceleration of the system:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
The mass is the number of n + p if you subtract p from mass you will find n
164 - 59 = 105
Answer:α = 1.00 rad/s², τ = 90.0 N•m, KEr = 1.12 kJ
Explanation:
m = 795/9.81 = 81.0 kg
ω₁ = 47.79 rev/min(2π rad/rev) / (60 s/min) = 5.00 rad/s
α = (ω₁ - ω₀)/τ = (5.00 - 0.00)/5.00 = 1.00 rad/s²
I = ½mR² = ½(81.0)(1.49²) = 90.0 kg•m²
τ = Iα = 90.0(1.00) = 90.0 N•m
KEr = ½Iω² = ½(90.0)5.00² = 1,124.477 ≈ 1.12 kJ
Answer:
You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. Even things that appear to be at rest move.
Explanation:
Answer:
The answer is 0 m/s.
Explanation:
The object isn't changing position at 7 seconds, meaning the velocity is 0 m/s!