The equation for electrical power is<span>P=VI</span>where V is the voltage and I is the current. This can be rearranged to solve for I in 6(a).
6(b) can be solved with Ohm's Law<span>V=IR</span>or if you'd like, from power, after substituting Ohm's law in for I<span>P=<span><span>V2</span>R</span></span>
For 7, realize that because they are in parallel, their voltages are the same.
We can find the resistance of each lamp from<span>P=<span><span>V2</span>R</span></span>Then the equivalent resistance as<span><span>1<span>R∗</span></span>=<span>1<span>R1</span></span>+<span>1<span>R2</span></span></span>Then the total power as<span><span>Pt</span>=<span><span>V2</span><span>R∗</span></span></span>However, this will reveal that (with a bit of algebra)<span><span>Pt</span>=<span>P1</span>+<span>P2</span></span>
For 8, again the resistance can be found as<span>P=<span><span>V2</span>R</span></span>The energy usage is simply<span><span>E=P⋅t</span></span>
It’s because flourecent lights operate at higher temperatures than incadecent lights.
The answer to this question should be: The accuracy in measuring its velocity decreases
Hope I helped
Answer:
Pressure = 5 x 10⁶ Pa
Explanation:
Given:
Height of building = 512 m
Find:
Pressure
Computation:
P2 = P1+dgh
P2 = 1 + (1000)(9.8)(512)
P2 = 51.2 atm
Pressure = 5 x 10⁶ Pa
What about coop what about dillon what about crenshawn IM ANGRYYY