The answer is C which is PbSo
Explanation:
Transfer of mass A into stagnant film B depends on the availability of driving force.
Whereas driving force is the pressure difference at the surface of A and the bulk.
As,
Therefore, putting the given values into the above formula as follows.
=
= 0.132
Thus, we can conclude that the flux of A from a surface into a mixture of A and B is 0.132
As per as the Multiplication rules of the significant figures, whenever any numbers in the decimals forms are multiplied or divided then result in mentioned in such a way so that the significant figures after the decimal will be same as that in the given least condition.
_______________________________
102900/12 = 8575
170 × 1.27 = 215.9
∴ (102,900 ÷ 12) + (170 × 1.27) = 8575 + 215.9
= 8790.9
Now, As per as Above rules, answer in correct significant figures will be = 8791.
Answer:
ΔSv = 0.1075 KJ/mol.K
Explanation:
Binary solution:
∴ a: solvent
∴ b: solute
in equilibrium:
- μ*(g) = μ(l) = μ* +RTLnXa....chemical potential (μ)
⇒ Ln (1 - Xb) = ΔG/RT
∴ ΔG = ΔHv - TΔSv
⇒ Ln(1 -Xb) = ΔHv/RT - ΔSv/R
∴ Xb → 0:
⇒ Ln(1) = ΔHv/RT - ΔSv/R
∴ T = T*b....normal boiling point
⇒ 0 = ΔHv/RT*b - ΔSv/R
⇒ ΔSv = (R)(ΔHv/RT*b)
⇒ ΔSv = ΔHv/T*b
∴ T*b = 80°C ≅ 353 K
⇒ ΔSv = (38 KJ/mol)/(353 K)
⇒ ΔSv = 0.1075 KJ/mol.K