A. A pure chemical substance consisting of one type of atom
The number of chlorine atoms present on the product side of the reaction is 6
<h3>What is a chemical equation? </h3>
Chemical equations are representations of chemical reactions using symbols and formula of the reactants and products.
The balancing of chemical equations follows the law of conservation of matter which states that matter can neither be created nor destroyed during a chemical reaction but can be transferred from one form to another.
<h3>How to determine the number of atoms of Cl</h3>
2Al + 6HCl → 2AlCl₃ + 3H₂
Products => AlCl₃ and H₂
Number of Cl atoms = 2 × 3
Number of Cl atoms = 6 atoms
Learn more about chemical equation:
brainly.com/question/7181548
#SPJ4
Answer:
The sequence of an amino acid P is:
Glu-Gly-Lys-Ala-Ser-Phe-Lys-Gln-Val-Ile
Explanation:
Fragments obtained on hydrolysis of decapeptide P by the action of an enzyme named trypsin:
- Glu-Gly-Lys,
- Gln-Val-Ile
- Ala-Ser-Phe-Lys
Fragments obtained on hydrolysis of decapeptide P by the action of an enzyme named chymotrypsin:
- Lys-Gln-Val-Ile,
- Glu-Gly-Lys-Ala-Ser-Phe
In order to determine the sequence of protein P , we will arrange fragments in such a way so that common fragments or the common parts of fragments should come under each other.
On arranging these fragments :
Glu-Gly-Lys-Ala-Ser-Phe
Glu-Gly-Lys
Ala-Ser-Phe-Lys
Lys-Gln-Val-Ile
Gln-Val-Ile
The sequence of an amino acid P is:
Glu-Gly-Lys-Ala-Ser-Phe-Lys-Gln-Val-Ile
Answer:
The
for the reaction
will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for 
![K_c=[B]^2[A]](https://tex.z-dn.net/?f=K_c%3D%5BB%5D%5E2%5BA%5D)
= 0.045
The reverse will be 
Then, ![K_c = \frac{[A]}{[B]^2}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5BA%5D%7D%7B%5BB%5D%5E2%7D)
= 
= 
The equilibrium constant for
will be


= 4.69
Therefore,
for the reaction
will be 4.69.
Answer:
pH = 6.8124
Explanation:
We know pH decreases with increase in temperature.
At room temperature i.e. 25⁰c pH of pure water is equal to 7
We know
Kw = [H⁺][OH⁻]...............(1)
where Kw = water dissociation constant
At equilibrium [H⁺] = [OH⁻]
So at 37⁰c i.e body temperature Kw = 2.4 × 10⁻¹⁴
From equation (1)
[H⁺]² = 2.4 × 10⁻¹⁴
[H⁺] = √2.4 × 10⁻¹⁴
[H⁺] = 1.54 × 10⁻⁷
pH = - log[H⁺]
= - log{1.54 × 10⁻⁷}
= 6.812