Answer:

Explanation:
Hello there!
In this case, according to the rules for the oxidation states in chemical reactions, it is possible to realize that lone elements have 0 and since magnesium is in group 2A, it forms the cation Mg⁺² as it loses electrons and oxygen is in group 6A so it forms the anion O⁻²; therefore resulting oxidation numbers are:

Best regards!
Answer:

Explanation:
Hello,
In this case, we write the reaction again:

In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:

Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:

But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:

Best regards.
The second thesis statement is perfect. It supports the claim and presents main idea.
Answer:
Favorite Answer
1.0 x10^-14 = (1.0 x 10^-13) (x)
x = 1.0 x 10^-1 = 0.1 M (this is the [OH-])
pOH = -log 0.1 = 1.0
Explanation:
I hope this helps :) sorry if not :(