Explanation:
Rutherford proposed a revised model for the atom, called the planetary model. The previous model of the atom was Thomson's Plum Pudding Model which consisted of freely moving positive and negative charges inside the atom.
Rutherford proposed his model after an experiment he conducted called the Gold Foil Experiment. This experiment consisted of a thin gold sheet into which alpha particles were shot upon and they were detected by a sensor. The image attached will give a better explanation of this. In this experiment he shot a beam of alpha particles(helium nucleus) at a thin sheet of gold. Rutherford hypothesised that there should be minimum deflection of the positively charged alpha particles occuring due to the repulsion of the alpha particle with the positive charges in the thin gold sheet. This was not the case.
However what he found was that most of alpha particles went straight through the thin sheet of gold but some were reflected back to him. This surprised him. Hence he proposed that most of the atom must be empty space as most of the alpha particles went straight through the sheet and there must be a heavy nucleus inside the atom causing the alpha particles to bounce back.
Answer:
due to production of heat through friction
Answer:
a) 9.72 mm
b) 4.86 mm
Explanation:
wave length of light λ is 580 nm = 580 \times 10⁻⁹ m
Width of slit d = 0.215\times 10⁻³ m
Distance of screen D = 1.8 m.
Width of one fringe = 
Putting the values we get fringe width
= 
=4.86 mm.
a) Width of central maxima = 2 times width of one fringe
= 2 times 4.86
=9.72 mm
b) width of each fringe except central fringe is same , no matter what the order is.Only brightness changes .
So width of either of the two first order bright fringe will be same and it will be
= 4.86 mm.
Answer: The correct answer is A). Animal burrow because burrow fossils represent the preserved byproducts of behavior rather than physical remains, they are considered a kind of trace fossil. One common kind of burrow fossil is known as Skolithos, and the similar Trypanites, Ophiomorpha and Diplocraterion.