Earths plates move, creating them to rub together to create earthquakes, and volcanoes occur because magma melts rocks and the pressure is so intense it causes the lava to leak out of the top of a mountain
<span>373.2 km
The formula for velocity at any point within an orbit is
v = sqrt(mu(2/r - 1/a))
where
v = velocity
mu = standard gravitational parameter (GM)
r = radius satellite currently at
a = semi-major axis
Since the orbit is assumed to be circular, the equation is simplified to
v = sqrt(mu/r)
The value of mu for earth is
3.986004419 Ă— 10^14 m^3/s^2
Now we need to figure out how many seconds one orbit of the space station takes. So
86400 / 15.65 = 5520.767 seconds
And the distance the space station travels is 2 pi r, and since velocity is distance divided by time, we get the following as the station's velocity
2 pi r / 5520.767
Finally, combining all that gets us the following equality
v = 2 pi r / 5520.767
v = sqrt(mu/r)
mu = 3.986004419 Ă— 10^14 m^3/s^2
2 pi r / 5520.767 s = sqrt(3.986004419 * 10^14 m^3/s^2 / r)
Square both sides
1.29527 * 10^-6 r^2 s^2 = 3.986004419 * 10^14 m^3/s^2 / r
Multiply both sides by r
1.29527 * 10^-6 r^3 s^2 = 3.986004419 * 10^14 m^3/s^2
Divide both sides by 1.29527 * 10^-6 s^2
r^3 = 3.0773498781296 * 10^20 m^3
Take the cube root of both sides
r = 6751375.945 m
Since we actually want how far from the surface of the earth the space station is, we now subtract the radius of the earth from the radius of the orbit. For this problem, I'll be using the equatorial radius. So
6751375.945 m - 6378137.0 m = 373238.945 m
Converting to kilometers and rounding to 4 significant figures gives
373.2 km</span>
Answer:
There are actually three, Kepler's laws that is, of planetary motion: 1) every planet's orbit is an ellipse with the Sun at a focus; 2) a line joining the Sun and a planet sweeps out equal areas in equal times; and 3) the square of a planet's orbital period is proportional to the cube of the semi-major axis of its
They give off a particle to become stable.