Answer:
17.54N in -x direction.
Explanation:
Amplitude (A) = 3.54m
Force constant (k) = 5N/m
Mass (m) = 2.13kg
Angular frequency ω = √(k/m)
ω = √(5/2.13)
ω = 1.53 rad/s
The force acting on the object F(t) = ?
F(t) = -mAω²cos(ωt)
F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)
F(t) = -17.65 * cos (5.355)
F(t) = -17.57N
The force is 17.57 in -x direction
Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
Violet light is at the end of the visible light section of the electromagnetic spectrum. Ultraviolet rays are directly next to violet rays on the EM Spectrum.