Answer:
B. Ca(NO2)2
Explanation:
Ions (charged atoms) combine with one another to form stable ionic compounds. In this case, calicium ion (Ca2+) is said to react with NO2, which has a charge of -1 i.e. +1-1(2) = 1-2 = -1.
This means that calcium has a charge of +2 while nitrite ion has charge of -1, hence, when they combine, they exchange their charges, which become their subscript as follows:
Ca2+ + NO2- → Ca(NO2)2
Ca(NO2)2 is a stable ionic compound called calcium nitrite. Notice that it takes two atoms of NO2- to react with one atom of Ca2+.
Answer:
The answer is: (a) positive; (b) negative.
Explanation:
The change in enthalpy (ΔH) of a reaction is the amount of energy absorbed or released during a chemical reaction carried out at constant pressure.
a) In an endothermic chemical reaction, heat energy is absorbed by the system from the surrounding. Therefore, the sign of enthalpy change for an endothermic process is positive, ΔH= positive.
b) In an exothermic chemical reaction, heat energy is released by the system into the surrounding. Therefore, the sign of enthalpy change for an exothermic process is negative, ΔH= negative.
The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is 
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{324^oC}}{K_{244^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7BK_%7B244%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 244°C = 
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![244^oC=[273+244]K=517K](https://tex.z-dn.net/?f=244%5EoC%3D%5B273%2B244%5DK%3D517K)
= final temperature = ![324^oC=[273+324]K=597K](https://tex.z-dn.net/?f=324%5EoC%3D%5B273%2B324%5DK%3D597K)
Putting values in above equation, we get:
![\ln(\frac{K_{324^oC}}{6.7})=\frac{71000J}{8.314J/mol.K}[\frac{1}{517}-\frac{1}{597}]\\\\K_{324^oC}=61.29M^{-1}s^{-1}](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7B6.7%7D%29%3D%5Cfrac%7B71000J%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B517%7D-%5Cfrac%7B1%7D%7B597%7D%5D%5C%5C%5C%5CK_%7B324%5EoC%7D%3D61.29M%5E%7B-1%7Ds%5E%7B-1%7D)
Hence, the rate constant at 324°C is 
Answer:
Counting the number of colonies that arise on a pour plate can calculate the concentration by multiplying the count by the volume spread on the pour plate. Direct counting methods are easy to perform and do not require highly specialized equipment, but are often slower than other methods
Explanation:
I hope it will help you
Answer:
density/volume
Explanation:
Divide the object’s weight by the acceleration of gravity to find the mass.