What are the choices ?
Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation. A few of them might be . . .
-- Kevin will have no trouble getting back in time for dinner.
-- Kevin will have no time to enjoy the scenery along the way.
-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.
-- Speed = (distance covered) / (time to cover the distance) .
If time to cover the distance is zero, then speed is huge (infinite).
-- Kinetic energy = (1/2) (mass) (speed)² .
If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.
-- Mass = (Kevin's rest-mass) / √(1 - v²/c²)
-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
if he ever reached Planet-Y, nobody could see him anyway.
The state of matter that the particles move independently of one another with very little attraction is, I believe, gas
Answer: friction reduces the speed during motion
Explanation:
The more the friction, the lesser the speed during motion
The new gravitation force at the new location is 40 N
Explanation:
The weight of the astronaut is given by the equation
(1)
where
m is the mass of the astronaut
g is the acceleration of gravity
The acceleration of gravity at a certain distance
from the centre of the Earth is given by

where G is the gravitational constant and M is the Earth's mass. So we can rewrite eq.(1) as

When the astronaut is on the Earth's surface,
(where R is the Earth's radius), so his weight is

Later, he moves to another location where his distance from the Earth's surface is 3 times the previous distance, so the new distance from the Earth's centre is

Therefore, the new weight is

Which means that his weight has decreased by a factor 16: therefore, the new weight is

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly