Answer:
h2 = 0.092m
Explanation:
From a balance of energy from point A to point B, we get speed before the collision:
Solving for Vb:

Since the collision is elastic, we now that velocity of bead 1 after the collision is given by:

Now, by doing another balance of energy from the instant after the collision, to the point where bead 1 stops, we get the distance it rises:
Solving for h2:
h2 = 0.092m
Momentum = mass x velocity, so 500kg x 2m/s = 1000 kg m/s
= 3.456 × 1011
(scientific notation)
= 3.456e11
(scientific e notation)
= 345.6 × 109
(engineering notation)
(billion; prefix giga- (G))
= 345600000000
(real number)
Answer:
Cars have bumpers designed to protect the body of the car from minor damage during low-speed collisions. ... They will use the engineering design process to design and build bumpers to protect the main parts of their car from damage, and use their knowledge of Newton's third law to explain what they observe.
Explanation: