Answer:
The answer to your question is 1.36 x 10²³ atoms
Explanation:
Data
number of atoms = ?
mass of the sample = 34.2 g
Molecule = Cl₂O₅
Process
1.- Calculate the molar mass of Cl₂O₅
Cl₂O₅ = (35.5 x 2) + (16 x 5) = 71 + 80 = 151 g
2.- Calculate the atoms of Cl₂O₅
151 g of Cl₂O₅ ---------------- 6 .023 x 10²³ atoms
34.2 g of Cl₂O₅ ------------ x
x = (34.2 x 6.023 x 10²³) / 151
x = 1.36 x 10²³ atoms
Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)
Answer:
Freezing point = 1.25
Explanation:
If we increase the concentration of the solution, the concentration of H+ does not change.
Convert 2.5% in to decimal
2.5% = 2.5 ÷100
= 0.025
The freezing point = 0.025 × 50
= 1.25
Answer:
about 0.9 mol
Explanation:
there are 22.990 g/mol of Na
20.7/22.99 = 0.900391 mol
about 0.9 mol
iron Presence of trace elements, irradiation and iron impurities give the gem amethyst its purplish color!