Answer:
There are 1.05 x 10²⁴ molecules in 48.6 g N₂
Explanation:
1 mol of N₂ has a mass of (14 g * 2) 28 g.
Then, 48.6 g of N₂ will be equal to (48.6 g *(1 mol/ 28 g)) 1.74 mol.
Since there are 6.022 x 10²³ molecules in 1 mol N₂, there will be
(1.74 mol *( 6.022 x 10²³ / 1 mol)) 1.05 x 10²⁴ molecules in 1.74 mol N₂ (or 48. 6 g N₂).
Explanation:
number bonds are pairs of numbers that can be added together to make another number e.g. 4 + 6 = 10. They are some of the most basic and most importantparts ofmaths for children to learn
Answer: Option (b) is the correct answer.
Explanation:
In a chemical reaction, the bonds between the reactant molecules tend to break leading to the formation of new bonds to produce products.
So, in order to break the bonds between the reactant molecules, energy is required to overcome the attraction between the atoms.
To form new bonds, energy gets released when two atoms come closer to each other. Hence, formation of bond releases energy.
As in the given reaction it is shown that
< 0, that is, enthalpy change is negative. Hence, energy is released as it is an exothermic process.
Thus, we can conclude that the statement energy released as the bonds in the reactants is broken is greater than the energy absorbed as the bonds in the products are formed, is true about the bond energies in this reaction.
The reaction is as follows:
2 H₂(g) + O₂(g) → 2 H₂O(g) . ΔH = - 483.5 kJ
Using the change in enthalpy and heat, calculate the moles as follows:
Moles of H₂ = -

x 2 mol H₂
= - 216 kJ / (-483.5 kJ) x 2 mol H₂
= 0.893 mol H₂
Calculate the mass of H₂ using the moles and molar mass as follows:
0.893 mol H₂ x (2.02 g H₂ / 1 mol H₂) = 1.79 g H₂
Therefore, the mass of hydrogen gas is 1.79 g