Answer:
Explanation:
mass % of C = 0.27/0.45*100 = 60%
mass % of H = 0.02/0.45*100 = 4.4%
mass % of O = 0.16/0.45*100 = 35.6%
Total = 60%+4.4%+ 35.6% = 100%
Light bulb -it produces heat and light
toaster - it produces heat and the metal strips glow producing light
6= Only the digits 1 and 6 are the actual measured values. Therefore we have only 2 significant figures.
0.3= Zeros used as placeholders are not significant. Zeros that come before non-zero integers are never significant. Example 5: The zeros in 098, 0.3, and 0.000000000389 are not significant because they are all in front of non-zero integers. c. If the zeros come after non-zero integers and are followed by a decimal point, the zeros are significant.
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86