1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
5

Question 3

Physics
1 answer:
Gennadij [26K]3 years ago
5 0
A. B. D. C. D, A, A, C, B, B, D, D
You might be interested in
PLEASE HELP:
german

Answer:

3.39 mins.

10m/s multiplied by 6 equals to 60 seconds or 1 minute

7 0
2 years ago
HELP PLS.<br><br><br>What are the characteristics of the three states of matter?
vredina [299]

Matter can exist in one of three main states: solid, liquid, or gas. Solid matter is composed of tightly packed particles. A solid will retain its shape; the particles are not free to move around. Liquid matter is made of more loosely packed particles. Hopefully this helps:)

5 0
3 years ago
Read 2 more answers
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to grea
Alexxx [7]

Answer:

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

Explanation:

To answer this question, let's analyze the problem. Let's use conservation of energy

Starting point. Highest point

          Em₀ = U = m g h

Final point. To get off the ramp

          Em_f = K = ½ mv² + ½ I w²

notice that we include the kinetic energy of translation and rotation

         

energy is conserved

        Em₀ = Em_f

        mgh = ½ m v² +1/2 I w²

angular and linear velocity are related

         v = w r

         w = v / r

we substitute

          mg h = ½ v² (m + I / r²)

          v² = 2 gh   \frac{m}{m+ \frac{I}{r^2} }

          v² = 2gh    \frac{1}{1 + \frac{I}{m r^2} }

this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)

         v² = v₀² + 2 a L

where L is the length of the plane

         v² = 2 a L

         a = v² / 2L

we substitute

         a = g \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

let's use trigonometry

         sin θ = h / L

         

we substitute

         a = g sin θ   \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

the moment of inertia of each object is tabulated, let's find the acceleration of each object

a) Hollow cylinder

      I = m r²

we look for the acerleracion

      a₁ = g sin θ    \frac{1}{1 + \frac{mr^2 }{m r^2 } }1/1 + mr² / mr² =

      a₁ = g sin θ    ½

b) solid cylinder

       I = ½ m r²

       a₂ = g sin θ  \frac{1}{1 + \frac{1}{2}  \frac{mr^2}{mr^2} } = g sin θ   \frac{1}{1+ \frac{1}{2} }

       a₂ = g sin θ   ⅔

c) hollow sphere

     I = 2/3 m r²

     a₃ = g sin θ   \frac{1}{1 + \frac{2}{3} }

     a₃ = g sin θ \frac{3}{5}

d) solid sphere

     I = 2/5 m r²

     a₄ = g sin θ  \frac{1 }{1 + \frac{2}{5} }

     a₄ = g sin θ  \frac{5}{7}

We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)

a) a₁ = g sin θ ½ = g sin θ      \frac{105}{210}

b) a₂ = g sinθ ⅔ = g sin θ     \frac{140}{210}

c) a₃ = g sin θ \frac{3}{5}= g sin θ       \frac{126}{210}

d) a₄ = g sin θ \frac{5}{7} = g sin θ      \frac{150}{210}

the order of acceleration from lower to higher is

   

     a₁ <a₃ <a₂ <a₄

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

8 0
3 years ago
A person sitting in a chair with wheels stands up, causing the chair to roll backward across the floor. How would you describe t
OleMash [197]
Scenes the chair wheels are up the person is rolling backwards and if the wheels were down then the person would go forwards
 <span />
3 0
3 years ago
Which describes what an outside observer at rest would observe about a spaceship that speeds up and approaches the speed of ligh
Art [367]
The outside observer, at rest relative to the spaceship, would see the spaceship
get shorter. and the clocks on the spaceship run slower than they should.

At the same time, the crew of the spaceship, looking back at the observer on
Earth, would see the observer on Earth get shorter, and the observer's clock
run slower than it should.

They would both be measuring what they see correctly.
6 0
3 years ago
Read 2 more answers
Other questions:
  • The international governing body for badminton is the
    7·2 answers
  • What is the velocity of a car that has traveled 500 miles northeast in 5 hours
    5·2 answers
  • How do scientists use models to make predictions?
    14·1 answer
  • A grasshopper leaps into the air at a 62° angle above the horizontal, and follows a parabolic arc in free fall after it leaves t
    15·1 answer
  • What are the three main ideas associated with Newton’s second law of motion? List these in your own words .
    6·1 answer
  • If a motorcycle accelerates uniformly from rest at 5 m / s2, how long does it take for it to reach a speed of 20 m / s.
    8·1 answer
  • Sian wants to measure the number of seconds that it takes for the contents of a beaker to change from clear to purple. Which of
    10·2 answers
  • The gazelle travels 2 km in a half hour.The gazelle's average speed is:
    9·1 answer
  • How much does a person weigh if it takes 700 kg*m/s to move them 10 m/s<br><br> NEED ASAP
    14·1 answer
  • I am stumped - please help!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!