Answer:
The only incorrect statement is from student B
Explanation:
The planet mercury has a period of revolution of 58.7 Earth days and a rotation period around the sun of 87 days 23 ha, approximately 88 Earth days.
Let's examine student claims using these rotation periods
Student A. The time for 4 turns around the sun is
t = 4 88
t = 352 / 58.7 Earth days
In this time I make as many rotations on itself each one with a time to = 58.7 Earth days
#_rotaciones = t / to
#_rotations = 352 / 58.7
#_rotations = 6
therefore this statement is TRUE
student B. the planet rotates 6 times around the Sun
t = 6 88
t = 528 s
The number of rotations on itself is
#_rotaciones = t / to
#_rotations = 528 / 58.7
#_rotations = 9
False, turn 9 times
Student C. 8 turns around the sun
t = 8 88
t = 704 days
the number of turns on itself is
#_rotaciones = t / to
#_rotations = 704 / 58.7
#_rotations = 12
True
The only incorrect statement is from student B
Answer: Energy consumption and sustainability is important so that it remain available for future generation.
Explanation:
1. The home furnaces are likely to require fuel like coal, which will directly emit carbon dioxide and carbon monoxide gases. These should be replaced with the electrical furnaces. The old or more power consuming air conditioners should be replaced with new ones.
2. The water heaters should be tankless so their capacity to heat more water could be possible. The water heaters should be electricity saving.
3. Washer and dryers should be water savy and electricity savy. A front-loading washing machine is useful energy saver.
4. The LED lights are more electricity saving than conventional bulbs. Halogen lights are also electricity saving.
Vf^2 = Vi^2 + 2ad
a= 34 m/s^2
Vi = 0 m/s
d = 3400m
Vf = 480.83 m/s
a=v/t
t=v/a
t=480.83/34
t=14.142 s
Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.
Potential energy = (weight) x (height)
After the car has been raised 2.5 meters, it has
(11,000) x (2.5) = 27,500 Joules
MORE potential energy than it had before it was lifted.
That's the energy that has to come from the work you do to lift it.
Since no mechanical process is ever 100% efficient, the work required
to accomplish this task is <em>at least 27,500 joules</em>.