I got the one you got to pick up my car stereo truck in my truck so I’m coming
D = mass / volume
d = 100 g / 100 mL
d = 1.0 g/mL
It would be 5.0 more in i did this
Answer:
1.) AgNO₃
2.) 0.563 moles AgBr
Explanation:
The limiting reagent is the reagent that is used up completely during a reaction. It can be identified by calculating which reactant produces the smallest amount of product. This can be done by determining the number of moles of each reagent (via molarity conversion). and then converting it to moles of the product (via mole-to-mole ratio).
AgNO₃ (aq) + KBr (aq) ---> AgBr (s) + KNO₃ (aq)
Molarity (M) = moles / liters
100 mL = 1 L
AgNO₃
45.0 mL / 100 = 45.0 L
1.25 M = ? moles / 0.450 L
? moles = 0.563 moles
KBr
75.0 mL / 100 = 0.750 L
0.800 M = ? moles / 0.750 L
? moles = 0.600 moles
In this case, there is no need to use the mole-to-mole ratio because all of the coefficients are one in the reaction (the amount of the limiting reagent used is the same amount of product produced). Since AgNO₃ produces the smaller amount of product, it is the limiting reagent.
Answer:
Mass = 182.4 g
Explanation:
Given data:
Number of moles of Al₂O₃ = 3.80 mol
Mass of oxygen required = ?
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Now we will compare the moles of aluminum oxide and oxygen.
Al₂O₃ : O₂
2 : 3
3.80 : 3/2×3.80 = 5.7
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 5.7 mol × 32 g/mol
Mass = 182.4 g