Answer:
Mass = 14.876 g
Explanation:
Given data:
Volume of gold = 0.77 cm³
Mass of gold = ?
Solution:
Density of gold from literature is 19.32 g/cm³
Formula:
d = m/v
d = density
m = mass
v = volume
by putting values,
19.32 g/cm³ = m/ 0.77 cm³
m = 19.32 g/cm³ × 0.77 cm³
m = 14.876 g
Answer:
9.00 atm
For total pressure, you would add all the pressures together
Answer:
The number of lines possible for SO2 is 3
Explanation:
The following Procedure should be followed when calculating the number of vibrational modes:-
- Identify if the given molecule is either linear or non-linear
- Calculate the number of atoms present in your molecule
- Place the value of n in the formula and solve.
SO2 is a non-linear molecule because it contains a lone pair which causes the molecule to bent in shape hence, The mathematical formula for calculating the number of non-linear molecule in a infrared region is (3n - 6) here n is the number of atoms in molecule.
hence for Sulphur Dioxide (SO2), n will be 3
<u> Therefore, The number of lines possible for SO2 is (3*3) - 6 = 3</u>
Answer:
The value of the heat capacity of the Calorimeter
= 54.4 
Explanation:
Given data
Heat added Q = 4.168 KJ = 4168 J
Mass of water
= 75.40 gm
Temperature change = ΔT = 35.82 - 24.58 = 11.24 ° c
From the given condition
Q =
ΔT +
ΔT
Put all the values in above equation we get
4168 = 75.70 × 4.18 × 11.24 +
× 11.24
611.37 =
× 11.24
= 54.4 
This is the value of the heat capacity of the Calorimeter.
1. Answer;
- Exothermic reaction
Explanation;
-Exothermic reactions are types of chemical reactions in which heat energy is released to the surroundings. Since enthalpy change is the difference between the energy of products an that of reactants. It means that in an exothermic reaction the energy of products is less than that of products. In this case an energy of 315kJ is released to the surroundings.
2. Answer;
Conserved
-The total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Explanation;
-According to the law of conservation of energy, energy is neither created nor destroyed. Energy may change form during a chemical reaction. For example, energy may change form from chemical energy to heat energy when gas burns in a furnace. However, the exact amount of energy remains after the reaction as before, which is true for all chemical reactions.