Explanation:
This is because the drag force suffered by the aircraft is proportional to the speed at which it travels. The thrust of the engines prints a speed to the plane and this speed prints a drag force, always reaching an equilibrium point of these two forces where the speed of the plane is constant and the acceleration is equal to zero.
Therefore, by reducing the thrust, the drag force is greater and the plane begins to decrease its speed, until it reaches the point where the new drag force is matched with the new thrust force, giving it a new final speed , without acceleration.
The skydiver has a bunch of gravitational potential energy. The best example of chemical potential energy is gasoline.
D = (1/2)·at²
where d is the distance fallen, a is the acceleration (g in this problem), and t is the time
d = (1/2)·(9.8 m/s²)·(30 s)² = (1/2)·(9.8)·(900) m
d = 4410 m
The answer is b) 4410 m
Note: the mass of the raindrop is irrelevant since the acceleration due to gravity is independent of mass. (Galileo's Leaning Tower of Pisa experiment)