Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
Answer:
a)
m/s
b)
Angular frequency = 
Explanation:
As we know

q is the charge on the electron =
C
B is the magnetic field in Tesla =
T
r is the radius of the circle =
m
mass of the electrons =
Kg
a)
Substituting the given values in above equation, we get -
m/s
b)
Angular frequency =

Answer:
Mechanical advantage = 4
Explanation:
Given the following data;
Distance of effort, de = 8m
Distance of ramp, dr = 2m
To find the mechanical advantage;
Mechanical advantage = de/dr
Substituting into the equation, we have;
Mechanical advantage = 8/2
Mechanical advantage = 4
Answer:
52,360,000km
Explanation:
To solve this problem you use a conversion factor.
By taking into account that 1UA = 1.496*10^{8}km you obtain:

hence, 0.35UA is about 52,360,000km. This is the least distance between Mars and Earth