Answer:
Centripetal acceleration = 83.77m/s²
Explanation:
<u>Given the following data;</u>
Radius, r = 0.13m
Velocity, v = 3.3m/s
To find centripetal acceleration;
Centripetal acceleration is given by the formula;
Substituting into the equation, we have;
<em>Centripetal acceleration = 83.77m/s²</em>
<em>Therefore, the centripetal acceleration of the edge of the disc is 83.77 m/s². </em>
The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:
d = vt = (22 m/s)(12 s) = 264 m
For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²
Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m
Thus,
Total Displacement = 264 m + 201.67 m = 465.67 or approximately 4.7×10² m.
Answer:
A. This is a chemical reaction because only the electrons were rearranged.
Explanation:
A.P.E.X
Answer:
200A
Explanation:
Given that
the distance between earth surface and power cable d = 8m
when the current is flowing through cable , the magnitude flux density at the surface is 15μT
when the current flow throught is zero the magnitude flux density at the surface is 20μT
The change in flux density due to the current flowing in the power cable is
B = 20μT - 15μT
B =5μT -----(1)
The expression of magnitude flux density produced by the current carrying cable is
-----(2)
Substitute the value of flux density
B from eqn 1 and eqn 2

Therefore, the magnitude of current I is 200A
A) Agreed.
<span>b) Value agreed but units should be W (watts). </span>
<span>c) Here's one method... </span>
<span>15 miles = 24140 m </span>
<span>1 gallon of gasoline contains 1.4×10⁸ J. </span>
<span>So moving a distance of 24140m requires gasoline containing 1.4×10⁸ J </span>
<span>Therefore moving a distance of 1m requires gasoline containing 1.4×10⁸/24140 = 5800 J </span>
<span>Overcoming rolling resitance for 1m requires (useful) work = force x distance = 1000x1 = 1000J </span>
<span>So 5800J (in the gasoline) provides 1000J (overcoming rolling resistance) of useful work for each metre moved. </span>
<span>Efficiency = useful work/total energy supplied </span>
<span>= 1000/5800 </span>
<span>= 0.17 (=17%) </span>