Hi there!
We can use Newton's Second Law:

∑F = net force (N)
m = mass (kg)
a = acceleration (m/s²)
We are given the mass and acceleration, so:
∑F = 20 · 2 = <u>40 N</u>
Answer: B. meteorites, UV rays
The earth's atmosphere plays an important role in shielding the space rocks and meteorites enters inside the earth due to collision with the celestial body. Due to high heat and pressure in the mesospheric layer of the atmosphere these meteorites burned up before reaching the biosphere or hydrosphere system of the earth. The UV rays are protected from entering into the earth atmosphere by the ozone layer present in the stratosphere of the atmosphere. Both meteorites and UV rays can negatively effect the human population. Therefore, the atmosphere is an agent which provides protection against them.
At the start of the 0.266 s, the object's speed was 8.26 m/s.
The question can only be talking about speed, not velocity.
The
sun is a ball of hot gases containing different kinds of elements at different
cores. It has a very high temperature that radiates all throughout the Milky
Way galaxy. The sun has three main parts; photosphere, chromospheres
and corona. The outer core of a star located at the chromospheres contains
mostly of hydrogen. Inside the hydrogen is helium then carbon, oxygen, neon,
magnesium silicon and the inert gas. The photosphere is scattered by the loose electrons in the corona’s plasma.
Answer:

Explanation:
The speed increased from 2.0 * 10^7 m/s to 4.0 * 10^7 m/s over a 1.2 cm distance.
Let us find the acceleration:


Electric force is given as the product of charge and electric field strength:
F = qE
where q = electric charge
E = Electric field strength
Force is generally given as:
F = ma
where m = mass
a = acceleration
Equating both:
ma = qE
E = ma / q
For an electron:
m = 9.11 × 10^{-31} kg
q = 1.602 × 10^{-19} C
Therefore, the electric field strength of the electron is:
