Answer
is: The molar solubility of calcium phosphate is 108s⁵ = Ksp.
<span>
Balanced chemical reaction: Ca</span>₃(PO₄)₂(s) → 3Ca²⁺(aq) + 2PO₄³⁻(aq).<span>
[Ca²</span>⁺] =
3s(Ca₃(PO₄)₂) =
3s.<span>
[PO</span>₄³⁻] = 2s.<span>
Ksp = [Ca²</span>⁺]³ · [PO₄³⁻]².<span>
Ksp = (3s)³ · (2s)².
Ksp = 108s</span>⁵.
s = ⁵√(Ksp ÷ 108).
Hmm, friction maybe? I guess it depends on how fast she stopped?
Answer:
Hey mate, here is your answer. Hope it helps you.
Explanation:
To show how substances in a chemical reaction interact and to keep track of all elements and the number of atoms in each element on each side of the equation.The purpose of writing a balanced chemical equation is to know: the reactants (starting material) and products (end results) that occur. the ratios in which they react so you can calculate how much reactants you need and how much products can be formed.
Answer:
The correct answer is : 'the concatenation of NO will increase'.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
If the temperature is increased, so according to the Le-Chatlier's principle , the equilibrium will shift in the direction where increase in temperature occurs.

As, this is an endothermic reaction, increasing temperature will add more heat to the system which move equilibrium in the forward reaction with decrease in temperature. Hence, the equilibrium will shift in the right direction.
So, the concatenation of NO will increase.