Boyle law is a gas law stating the pressure and the volume of a gas have an inverse relationship when held at constant temperature.
Answer:
B = - 0.0326 dm³/mol
Explanation:
virial eq until second term:
∴ P = 10 bar * (atm/ 1.01325 bar) = 9.869 atm
∴ T = 200°C = 473 K
∴ Vm = 3.90 dm³/mol
∴ R = 0.08206 dm³.atm/K.mol
⇒ PVm / RT = 1 + B/Vm
⇒ ((9.869 atm)*(3.90 dm³/mol)) / ((0.08206 dm³.atm/mol.K)*(473K)) = 1 + B/Vm
⇒ 0.99164 = 1 + B/Vm
⇒ B/Vm = - 8.357 E-3
⇒ B = (3.90 dm³/mol)*( - 8.357 E-3 )
⇒ B = - 0.0326 dm³/mol
Answer:
The correct answer is option A.
Explanation:
Initial volume of the gas =
Final volume of the gas = 
Initial pressure of the gas =
Final volume of the gas = 
Using Boyle's law:



Hence,the correct answer is option A.
Answer:
Tests for gases
Hydrogen, oxygen, carbon dioxide, ammonia and chlorine can be identified using different tests.
Hydrogen. A lighted wooden splint makes a popping sound in a test tube of hydrogen.
Oxygen. A glowing wooden splint relights in a test tube of oxygen.
hope it will help
Answer:
b. potassium.
Explanation:
Potassium-sparing diuretics and salt substitutes are diuretics that eliminate salt and water but save potassium. They act by inhibiting the conducting sodium channels in the collecting tubule, such as amiloride and triamterene, or by blocking aldosterone, such as spironolactone.
Concomitant use of potassium-sparing diuretics together with salt substitutes may result in dangerously high blood levels of serum potassium. For this reason, it is important to consult a physician before taking these substances at the same time to avoid potential problems with potassium accumulation.