Answer:
The sugar would dissolve in water. You could then pour off the solution and wash the remaining sand with a bit more water. Heat the water to evaporate it from the sugar, and the two are separated.
Explanation:
please mark me brainliest and follow me.
The molecular weight of a given compound would simply the
sum of the molar weights of each component.
The molar masses of the elements are:
C = 12 amu
H = 1 amu
N = 14 amu
O = 16 amu
where 1 amu = 1 g / mol
Since there are 6 C, 5 H, 1 N and 2 O, therefore the
total molecular weight is:
molecular weight = 6 (12 amu) + 5 (1 amu) + 1 (14 amu) +
2 (16 amu)
molecular weight = 123 amu
Therefore the molecular weight of nitrobenzene is 123 amu
or which is exactly equivalent to 123 g / mol.
Answer:
negative but dont quote me on that
Explanation:
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g