1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatyana61 [14]
3 years ago
8

How do we know the sun rotate

Physics
2 answers:
Dima020 [189]3 years ago
8 0

Answer:  One side is blue-shifted and the other side is red-shifted.

Explanation: APEX 12/31/19

scoundrel [369]3 years ago
6 0

Answer:

From the movement of sunspots, Galileo discovered that sun rotate s on its own axis.

Explanation:

All the sunspots are traveling across the Sun's head. This movement is part of the Sun's general rotation of its axis. Observations also suggest that the Sun does not rotate like a solid body, but rotates differently because it is a gas. Actually the Sun is spinning faster at its equator than at at its poles. The Sun rotates once every 24 days at its equator, but only once every 35 days at its poles. We learn this by observing the movement of sunspots and other solar features pass through the Sun.

You might be interested in
Which of the following is an example of a lever? knife ramp pencil sharpener wheelbarrow
Kay [80]
I believe it is a knife
5 0
3 years ago
Read 2 more answers
What is the force per unit area at this point acting normal to the surface with unit nor- Side View √√ mal vector n = (1/ 2)ex +
Mumz [18]

Complete Question:

Given \sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] at a point. What is the force per unit area at this point acting normal to the surface with\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z   ? Are there any shear stresses acting on this surface?

Answer:

Force per unit area, \sigma_n = 28 MPa

There are shear stresses acting on the surface since \tau \neq 0

Explanation:

\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]

equation of the normal, \b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z

\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

Traction vector on n, T_n = \sigma \b n

T_n =  \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]

T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]

T_n = \frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.

\sigma_n = T_n . \b n

\sigma \b n = (\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z) . ((1/ \sqrt{2} ) \b e_x + 0 \b  e_y +(1/ \sqrt{2}) \b e_z)\\\\\sigma \b n = 28 MPa

If the shear stress, \tau, is calculated and it is not equal to zero, this means there are shear stresses.

\tau = T_n  - \sigma_n \b n

\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau =  [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau =  \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z

\tau = \sqrt{(-5/\sqrt{2})^2  + (27/\sqrt{2})^2 + (5/\sqrt{2})^2} \\\\ \tau = 19.74 MPa

Since \tau \neq 0, there are shear stresses acting on the surface.

3 0
3 years ago
An air-filled pipe is found to have successive harmonics at 945 Hz , 1215 Hz , and 1485 Hz . It is unknown whether harmonics bel
Aleonysh [2.5K]

Answer:

L = 0.635m

Explanation:

This problem involves the concept of stationary waves in pipes. For pipes closed at one end,

The frequency f = nv/4L for n = 1,3,5....n

For pipes open at both ends

f = nv/2L for n = 1,2,3,4...n

Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.

The film solution can be found in the attachment below.

8 0
3 years ago
Jessica stretches her arms out 0.60 m from the center of her body while holding a 2.0 kg mass in each hand. She then spins aroun
Juliette [100K]

Answer:

a.) L = 2.64 kgm^2/s

b.) V = 4.4 m/s

Explanation: Jessica stretches her arms out 0.60 m from the center of her body. This will be considered as radius.

So,

Radius r = 0.6 m

Mass M = 2 kg

Velocity V = 1.1 m/s

Angular momentum L can be expressed as;

L = MVr

Substitute all the parameters into the formula

L = 2 × 1.1 × 0.6 = 1.32kgm^2s^-1

the combined angular momentum of the masses will be 2 × 1.32 = 2.64 kgm^2s-1

b. If she pulls her arms into 0.15 m,

New radius = 0.15 m

Using the same formula again

L = 2( MVr)

2.64 = 2( 2 × V × 0.15 )

1.32 = 0.3 V

V = 1.32/0.3

V = 4.4 m/s

Her new linear speed will be 4.4 m/s

4 0
3 years ago
What is the universe's estimated age
lesya [120]
The universe's estimated age is <span>13.772 billion years</span>
3 0
4 years ago
Other questions:
  • When a skier skis down a hill, the normal force exerted on the skier by the hill is
    10·1 answer
  • A circular wire loop of radius 12.1 cm carries a current of 2.16 A. It is placed so that the normal to its plane makes an angle
    9·1 answer
  • Why is faulting most likely to occur near earth's surface and not deep within earth ?
    9·1 answer
  • The energy needed to ionize an atom of element X when it is in its most stable state is 500 kJ mol21. However, if an atom of X i
    6·1 answer
  • Suppose you had a point charge of 3.6 mC. show answer Incorrect Answer Calculate the magnitude of the electric field, in newtons
    14·1 answer
  • Which term identifies a scalar quantity?<br> (1) displacement (3) velocity<br> (2) momentum (4) time
    12·2 answers
  • A 58-kg boy swings a baseball bat, which causes a 0.140-kg baseball to move toward 3rd base with a velocity of 38.0 m/s.
    7·2 answers
  • I need help with #24 ASAP .. I have to get it done today.. I need help with #24 right now
    12·1 answer
  • 4
    8·1 answer
  • A sphere of radius r has a charge q distributed uniformly over its surface. How large a sphere contains 90 percent of the energy
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!