Answer:
the potential energy of this body is 245 J.
Explanation:
Given;
mass of the body, m = 250 g = 0.25 kg
height from which the body was dropped, h = 100 m
acceleration due to gravity, g = 9.8 m/s²
The potential energy of this body is calculated as;
P.E = mgh
substitute the given values and solve for the potential energy of this body;
P.E = 0.25 x 9.8 x 100
P.E = 245 J.
Therefore, the potential energy of this body is 245 J.
-- If the work is done to make the object move faster, then
the work done becomes kinetic energy of the object.
-- If work is done on the object but it doesn't move any faster,
then there must be friction holding it back. In that case, the work
that's done just to keep the object moving becomes heat, in the
places where the friction acts on it.
Explanation:
The given data is as follows.
mass (m) = 170 kg, Distance (s) = 9.6 m
Height (h) = 3.3 m, Force (F) = 1400 N
First, we will calculate the work performed by her as follows.
W = Fs
= 
= 13440 J
Hence, minimal work necessary to lift the refrigerator is as follows.
U = mgh
= 
= 5497.8 J
Therefore, we can conclude that he performed 5497.8 J of work.
Answer:
Solar system is a part of Milkyway Galaxy.
Explanation:
Mikyway is a Galaxy or we can compare it with a family of many members (collectively) ane Solar system is a part of mikyway galaxy or we can compare it with a member of the family!
Answer:
13.4 x 10 raise to power -19 C
Explanation:
. The distance moved by a charge in the direction of a uniform electric field is d= 1.8 cm =0.018 m
. The uniform electric field is E = 214 N/M
, The decrease in electrical potential energy is
d(P.E) = 51.63 x 10 raise to power -19 J
Let the magnitude of the charge of the moving particle be q
which is given by the equation
d(P.E) =qEd
51.63 x 10 power -19 = q(214)(0.018)
51.63 x 10 power -19 =3.852q
by making q the formular,
q = 13.4 x 10 power -19 C