1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
8

Technician A says independent shops are not affiliated with vehicle manufacturers, but it is easy for technicians who work in th

ese shops to get manufacturer training on new technologies. Technician B says independent shops are not affiliated with vehicle manufacturers, making it harder for independent technicians to access training on new vehicle technology. Who is correct? Technician A Technician A Both A and B Both A and B Neither A nor B Neither A nor B Technician B Technician B
Engineering
1 answer:
KatRina [158]3 years ago
8 0

Answer:

b

Explanation:

i did it yeater dayajsbs

You might be interested in
The diffusion coefficients for species A in metal B are given at two temperatures:
Kruka [31]

Answer:

a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s

Explanation:

Diffusion is governed by Arrhenius equation

D = D_0e^{\frac{-Q_d}{RT} }

I will be using R in the equation instead of k_b as the problem asks for molar activation energy

I will be using

R = 8.314\ J/mol*K

and

°C + 273 = K

here, adjust your precision as neccessary

Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm

So:

ln(6.69*10^{-17})=ln(D_0) -\frac{Q_d}{R*(1030+273)}

and

ln(6.56*10^{-16}) = ln(D_0) -\frac{Q_d}{R*(1290+273)}

You might notice that these equations have the form of  

d=y-ax

You can solve this equation system easily using calculator, and you will eventually get

D_0 =6.11*10^{-11}\ m^2/s\\ Q_d=1.49 *10^3\ J/mol

After you got those 2 parameters, the rest is easy, you can just plug them all   including the given temperature of 1180°C into the Arrhenius equation

6.11*10^{-11}e^{\frac{149\ 000}{8.143*(1180+273)}

And you should get D = 2.76*10^-16 m^/s as an answer for c)

5 0
3 years ago
A 500-km, 500-kV, 60-Hz, uncompensated three-phase line has a positivesequence series impedance. z = 5 0.03 1 + j 0.35 V/km and
Anni [7]

Answer:

A) 282.34 - j 12.08 Ω

B) 0.0266 + j 0.621 / unit

C)

A = 0.812 < 1.09° per unit

B =  164.6 < 85.42°Ω  

C =  2.061 * 10^-3 < 90.32° s

D =  0.812 < 1.09° per unit

Explanation:

Given data :

Z ( impedance ) = 0.03 i  + j 0.35 Ω/km

positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km

A) calculate Zc

Zc = \sqrt{\frac{z}{y} }  =  \sqrt{\frac{0.03 i  + j 0.35}{j4.4*10^-6 } }    

    = \sqrt{79837.128< 4.899^o}   =  282.6 < -2.45°

hence Zc = 282.34 - j 12.08 Ω

B) Calculate  gl

gl = \sqrt{zy} * d  

 d = 500

 z = 0.03 i  + j 0.35

 y = j4.4*10^-6 S/km

gl =  \sqrt{0.03 i  + j 0.35*  j4.4*10^-6}  * 500

   = \sqrt{1.5456*10^{-6} < 175.1^0} * 500

   = 0.622 < 87.55 °

gl = 0.0266 + j 0.621 / unit

C) exact ABCD parameters for this line

A = cos h (gl) . per unit  =  0.812 < 1.09° per unit ( as calculated )

B = Zc sin h (gl) Ω  = 164.6 < 85.42°Ω  ( as calculated )

C = 1/Zc  sin h (gl) s  =  2.061 * 10^-3 < 90.32° s ( as calculated )

D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )

where :  cos h (gl)  = \frac{e^{gl} + e^{-gl}  }{2}

             sin h (gl) = \frac{e^{gl}-e^{-gl}  }{2}

     

7 0
2 years ago
When you hover over an edge or point, you are activating ____________ in SketchUp?
7nadin3 [17]

Answer:b

hope thiss helps

Explanation

I took the quiz

7 0
2 years ago
Read 2 more answers
Just some random stufff
NeTakaya

Answer:

Nice!

Explanation:

5 0
2 years ago
Consider an aircraft powered by a turbojet engine that has a pressure ratio of 9. The aircraft is stationary on the ground, held
77julia77 [94]

Answer:

The break force that must be applied to hold the plane stationary is 12597.4 N

Explanation:

p₁ = p₂, T₁ = T₂

\dfrac{T_{2}}{T_{1}} = \left (\dfrac{P_{2}}{P_{1}}  \right )^{\frac{K-1}{k} }

{T_{2}}{} = T_{1} \times \left (\dfrac{P_{2}}{P_{1}}  \right )^{\frac{K-1}{k} } = 280.15 \times \left (9  \right )^{\frac{1.333-1}{1.333} } = 485.03\ K

The heat supplied = \dot {m}_f × Heating value of jet fuel

The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s

The heat supplied = \dot m · c_p(T_3 - T_2)

\dot m = 20 kg/s

The heat supplied = 20*c_p(T_3 - T_2) = 21,350 kJ/s

c_p = 1.15 kJ/kg

T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K

p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa

p₃ = p₂ = 855 kPa

T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K

T₄ = 1413.3 - 204.88 = 1208.42 K

\dfrac{T_5}{T_4}  = \dfrac{2}{1.333 + 1}

T₅ = 1208.42*(2/2.333) = 1035.94 K

C_j = \sqrt{\gamma \times R \times T_5} = √(1.333*287.3*1035.94) = 629.87 m/s

The total thrust = \dot m × C_j = 20*629.87 = 12597.4 N

Therefore;

The break force that must be applied to hold the plane stationary = 12597.4 N.

5 0
2 years ago
Other questions:
  • What is the energy change when the temperature of 15.0 grams of solid silver is decreased from 37.3 °C to 20.5 °C ?
    13·1 answer
  • A turbine produces shaft power from a gas that enters the turbine with a (static) temperature of 628 K, a velocity of 143 m/s an
    7·1 answer
  • Wqqwfqwfqwfqfqfqffqwffqwqfqqfqfqffqqfqfwccc
    12·2 answers
  • A decorative fountain was built so that water will rise to a hieght of 8 feet above the exit of the pipe. the pipe is 3/4 diamet
    5·1 answer
  • How do I cancel my subscription
    12·2 answers
  • Water flows through a horizontal 60 mm diameter galvanized iron pipe at a rate of 0.02 m3/s. If the pressure drop is 135 kPa per
    9·1 answer
  • Air is compressed in an isentropic process from an initial pressure and temperature of P1 = 90 kPa and T1=22°C to a final pressu
    7·1 answer
  • 6.3.3 Marks on an exam in a statistics course are assumed to be normally distributed
    14·1 answer
  • The main function of a router is to
    14·2 answers
  • Invent five new communication method wired or wireless you think would be practical
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!