Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength = .............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa
Answer: a) 1.05kW b) 3.78MJ c) 5.3 bars
Explanation :
A)
Conversions give 900 kcal as 900000 x 4.2 J/cal {4.2 J/cal is the standard factor}
= 3780kJ
And 1 hour = 3600s
Therefore, Power in watts = 3780/3600 = 1.05kW = 1050W
B)
At 15km/hour a 15km run takes 1 hour.
1 hour is 3600s and the runner burns 1050 joule per second.
Energy used in 1 hour = 3600 x 1050 J/s
= 3780000 J or 3.78MJ
C)
1 mile = 1.61km so 13.1 mile is 13.1 x 1.61 = 21.1km
15km needs 3.78 MJ of energy therefore 21.1km needs 3.78 x 21.1/15 = 5.32MJ =5320 kJ
Finally,
1 Milky Way = 240000 calories = 4.2 x 240000 J = 1008000J or 1008kJ
This means that the runner needs 5320/1008 = 5.3 bars
Answer:
The amperage draw of the condensing unit will be low.
Explanation:
A condensing unit is made up of a compressor and condenser, while an evaporating unit is made up of an evaporator coil.
A split AC system is a type of air conditioner system that has a condensing unit which is placed separately from the evaporative coil unit. Then the two units are connected to each other via a copper tube containing refrigerants.
The liquid line connects the condenser to the evaporator, and if this liquid line is restricted, the amp consumed by the condensing unit will be low.
Answer:
sulfur dioxide
Explanation:
The scrubber is an apparatus installed in a coal-fired power plant to clean the passing gas through the smokestack. Due to the norm enacted through the clean air Act, almost all the scrubber used in the U.S is used to remove sulfur concentration from coal. it can remove approx 90-95% SO_2 from the smokestack.
Answer:
For detailed answer of "
In subsea oil and natural gas production, hydrocarbon fluids may leave the reservoir with a temperature of 70°C and flow in subsea surrounding of S°C. As a result of the temperature difference between the reservoir and the subsea surrounding, the knowledge of heat transfer is critical to prevent gas hydrate and wax deposition blockages. Consider a subsea pipeline with inner diameter of O.S m and wall thickness of 8 mm is used for transporting liquid hydrocarbon at an average temperature of 70°C, and the average convection heat transfer coefficient on the inner pipeline surface is estimated to be 2SO W/m2.K. The subsea surrounding has a temperature of soc and the average convection heat transfer coefficient on the outer pipeline surface is estimated to be ISO W /m2 .K. If the pipeline is made of material with thermal conductivity of 60 W/m.K, by using the heat conduction equation (a) obtain the temperature variation in the pipeline wall, (b) determine the inner surface temperature of the pipeline wall, (c) obtain the mathematical expression for the rate of heat loss from the liquid hydrocarbon in the pipeline, and (d) determine the heat flux through the outer pipeline surface."
see attachment.
Explanation: