The maximum shear stress in the tube when the power is transmitted through a 4: 1 gearing is 28.98 MPa.
<h3>What is power?</h3>
Power is the energy transferred per unit time.
Torque is find out by
P = 2πNT/60
10000 = 2π x 2000 x T / 60
T =47.74 N.m
The gear ratio Ne / Ns =4/1
Ns =2000/4 = 500
Ts =Ps x 60/(2π x 500)
Ts =190.96 N.m
Maximum shear stress τ = 16/π x (T / (d₀⁴ - d₁⁴))
τ max =T/J x D/2
where d₁ = 30mm = 0.03 m
d₀ = 30 +(2x 4) = 38mm =0.038 m
Substitute the values into the equation, we get
τ max = 16 x 190.96 x 0.038 /π x (0.038⁴ - 0.03⁴)
τ max = 28.98 MPa.
Thus, the maximum shear stress in the tube is 28.98 MPa.
Learn more about power.
brainly.com/question/13385520
#SPJ1
Answer:
The weight should be added to the base of the sign to keep it from tipping is 65.6 lb
Explanation:
Given data:
A sigh weighs 40 pounds
Suported by an 18 in x 18 in square
Force of the wind 13.2 lb
Questions: Will the sign tip over, if yes, how much evelnly distributed weight should be added to the base of the sign to keep it from tipping, W = ?
The sign and the post have a length of 6 ft. You need to calculate the distance from the edge to the middle point:
18/2 = 9 in = 0.75 ft
Force acting in the base (40 lb):

The weight should be added to the base:

Answer:
The car has an energy of 1.017 × 10⁵ J when it moves at 97 miles per hour
Explanation:
Given the data in the question;
Initial velocity v₁ = 68 miles per hour = 30.398 meter per seconds
let mass of the car be m
kinetic energy of that car is 5 × 10⁵ J
so
E₁ =
mv²
we substitute
5 × 10⁵ =
× m × ( 30.398 )²
5 × 10⁵ =
× m × ( 30.398 )²
5 × 10⁵ = m × 462.019
m = 5 × 10⁵ / 462.019
m = 1082.2065 kg
Now, Also given that; v₂ = 97 miles per hour = 43.362 meter per seconds
E₂ =
mv₂²
we substitute
E₂ =
× 1082.2065 × ( 43.362 )²
E₂ =
× 1082.2065 × 1880.263
E₂ = 1.017 × 10⁵ J
Therefore, The car has an energy of 1.017 × 10⁵ J when it moves at 97 miles per hour
Answer:<u> to purchase organic jams</u>
Explanation:
I think it is
Explanation:
Step1
Lehr is the long open or closed insulated space for glass manufacturing. Lehr must be large enough to keep the cooling of glass uniform. The function of Lehr is the same as an annealing process in metallurgy.
Step2
Lehr decrease the cooling and temperature variation in glass production. Uneven temperature creates the internal stress in the glass. Lehr reduces the internal stress in the glass product. So, the main purpose of the Lehr is to reduce the internal stress and keep the cooling uniform.