Answer:
A. Methanol
B. 2-chloropropan-1-ol
C. 2,2-dichloroethanol
D. 2,2-difluoropropan-1-ol
Explanation:
Primary alcohols are stronger acids than secondary alcohols which are stronger than tertiary alcohols.
This trend is so because of the stability of the alkoxide ion formed(stabilising the base, increases the acidity). A more stabilised alkoxide ion is a weaker conjugate base (dissociation of an acid in water).
By electronic factors, When there are alkyl groups donating electrons, the density of electrons on th O- will increase a d thereby make it less stable.
By stearic factors, More alkyl group bonded to the -OH would mean the bulkier the alkoxide ion which would be harder to stabilise.
Down the group of the periodic table, basicity (metallic character) decreases as we go from F– to Cl– to Br– to I– because that negative charge is being spread out over a larger volume that is electronegativity decreases down the group.
Electronegative atoms give rise to inductive effect and a decrease in indutive effects leads to a decrease in acidity. Therefore an Increasing distance from the -OH group lsads to a decrease in acidity.
From above,
A. Methanol
B. 2-chloropropan-1-ol
C. 2,2-dichloroethanol
D. 2,2-difluoropropan-1-ol
Magnesium is divalent. This means that one magnesium atom needs to lose 2 electrons in order to become stable.
Chlorine, on the other hand, is monovalent. This means that one chlorine atom needs to gain one electron in order to become stable.
Based on this, one magnesium atom will combine with two chlorine atoms, where the magnesium loses two electrons, one for each chlorine.
The formula of the compound formed is: MgCl2
The Jetliner will travel a total of 1518 meters if flying for 6 hours.
Standard equation would be N2(g)+3H2(g)==>2NH3(g), so through stoichiometry, (4 mol N2)(2mol NH3/1 mol N2), assuming excess H2, would yield 8 moles of NH3.
Example:
sample density of gasoline, 20 g of weigth into 5 <span>mL
Answer:
D = m / V
D = 20 g / 5 mL
D = 4 g/mL</span>