Answer:
0.5mol/L
Explanation:
First, let us calculate the number of mole NaOH = 23 + 16 + 1 = 40g/mol
Mass of NaOH from the question = 30g
Number of mole = Mass /Molar Mass
Number of mole = 30/40 = 0.75mol
Volume = 1.5L
Active mass = mole/Volume
Active mass = 0.75mol/1.5L
Active mass = 0.5mol/L
The answer is going to be Rubidium. hope that helped
Answer:
Here's what I get
Step-by-step Explanation
(a) Effect of dilution
There will be no effect on the volume of NaOH needed.
The amount of HCl will be halved, so the amount of NaOH will be halved.
However, the concentration of NaOH is also halved, so you will need twice the volume.
You will be back to the same volume as before dilution.
(b) Net ionic equation
Molecular: HCl(aq)+NaOH(aq)→NaCl(aq)+H2O(l)
Ionic: H⁺(aq) + Cl⁻(aq) + Na⁺(aq) + OH⁻(aq) ⟶ Na⁺(aq) + Cl⁻(aq) + H₂O(l)
Net ionic: H⁺(aq) + OH⁻(aq) ⟶ H₂O(l)
(c) Proton acceptor
H⁺ is the proton. OH⁻ accepts the proton and forms water.
(d) Moles of HCl

(e) Equivalence point
The equivalence point is the point at which the titration curve intersects the pH 7 line.
(f) Schematic representation
Assume the box for 0.10 mol·L⁻¹ HCl contains four black dots (H⁺) and four open circles (Cl⁻).
The 0.20 mol·L⁻¹ solution is twice as concentrated.
It will contain eight black dots and eight open circles.
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
ΔT(freezing point) = (Kf)(molality)
ΔT(freezing point)
= 1.86 °C kg / mol (molality)
</span>Tf - 102.08 = 1.86m
Tf = 1.86m + 102.08
The concetration of the solution is needed in order to obtain a specific value.
The ionization energies (kJ/mol) of hydrogen, nitrogen, sodium, chlorine, and fluorine are 1,312, 1,402, 496, 1,256, and 1,681,
Norma-Jean [14]
Answer: Sodium will most likely to become a monoatomic ion with fluorine when these atoms interact.
Explanation:
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
With increase in atomic size of the atom, there will be less force of attraction between the nucleus and the valence electrons of the atom. Hence, with lesser amount of energy the valence electrons can be removed.
More is the value of ionization energy more it is difficult to remove an electron. Therefore, lesser is the reactivity of element.
Hence, we can conclude that sodium will most likely to become a monoatomic ion with fluorine when these atoms interact.