Answer: radon (atomic mass 222 amu
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
atomic mass of krypton= 83.8 amu
atomic mass of argon= 39.95 amu
atomic mass of xenon = 131.3 amu
atomic mass of radon= 222 amu
Thus as atomic mass of radon is highest, its rate of diffusion is slowest.
Answer:
As water freezes, a crystalline structure preserved by hydrogen bonding is formed by water molecules. Less dense than liquid water is solid water, or ice. Ice is less dense than water since molecules are pulled farther apart by the direction of hydrogen bonds, which decreases density.
Explanation:
Answer:
i think snowball, it sounds weird but its true (i think im sorry if its wrong)
Explanation:
Answer:
Waves carry energy from place to place.
Explanation:
Some waves are used for mainly communication and phone signals. They help people get internet in the middle of nowhere if you are near an energy wave.
Answer: hello your question is incomplete below is the complete question
Salt water contains n sodium ions (Na+) per cubic meter and n chloride ions (Cl−) per cubic meter. A battery is connected to metal rods that dip into a narrow pipe full of salt water. The cross sectional area of the pipe is A. The magnitude of the drift velocity of the sodium ions is VNa and the magnitude of the drift velocity of the chloride ions is VCl.
What is the magnitude of the ammeter reading ?
answer :
| I | = neAVₙₐ + neAV (Cl-)
Explanation:
Given that there are N sodium ions
<u>Determine the Magnitude of the ammeter reading </u>
| I | = current due to sodium ions + current due to (Cl-) ions
= neAVₙₐ + neAV (Cl-)